【題目】如圖,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,∠B=∠CAD=30°.
(1)AD是⊙O的切線嗎?為什么?
(2)若OD⊥AB,BC=5,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為5.
【解析】
試題(1)理解OA,根據(jù)圓周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根據(jù)切線的判定推出即可.
(2)求出等邊三角形OAC,求出AC,即可求出答案.
試題解析:(1)AD是⊙O的切線,理由如下:連接OA,
∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴點A在⊙O 上,
∴AD是⊙O的切線;
(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等邊三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半徑為5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=2BC,E為AD的中點,∠ABD=90°.
(1)求證:四邊形BCDE是菱形;
(2)連接CE,若CE=6,BC=5,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠BAC=30°,D為角平分線上一點,DE⊥AC于E,DF∥AC,且交AB于點F.
(1)求證:△AFD為等腰三角形;
(2)若DF=10cm,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將進(jìn)價為100元的某商品按120元的價格出售,可賣出300個;若商店在120元的基礎(chǔ)上每漲價1元,就要少賣10個,而每降價1元,就可多賣30個.
(1)求所獲利潤y (元)與售價x(元)之間的函數(shù)關(guān)系式;
(2)為獲利最大,商店應(yīng)將價格定為多少元?
(3)為了讓利顧客,且獲利最大,商店應(yīng)將價格定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為10,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:(1)畫的外角,再畫的平分線.(尺規(guī)作圖)
(2)若,請完成下面的證明:
已知:中,,是外角的平分線.
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,D是BC的中點,過D點畫直線EF與AC相交于E,與AB的延長線相交于F,使BF=CE.
①已知△CDE的面積為1,AE=kCE,用含k的代數(shù)式表示△ABD的面積為 ;
②求證:△AEF是等腰三角形;
(2)如圖2,在△ABC中,若∠1=2∠2,G是△ABC外一點,使∠3=∠1,AH∥BG交CG于H,且∠4=∠BCG﹣∠2,設(shè)∠G=x,∠BAC=y,試探究x與y之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在(1)、(2)的條件下,△AFD是銳角三角形,當(dāng)∠G=100°,AD=a時,在AD上找一點P,AF上找一點Q,FD上找一點M,使△PQM的周長最小,試用含a、k的代數(shù)式表示△PQM周長的最小值 .(只需直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的內(nèi)接四邊形中,,,點在上.
(1)求的度數(shù);
(2)若的半徑為,則的長為多少?
(3)連接,,當(dāng)時,恰好是的內(nèi)接正邊形的一邊,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com