【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),點(diǎn)P是x軸上一動(dòng)點(diǎn),將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AQ,當(dāng)點(diǎn)P從點(diǎn)(3,0)運(yùn)動(dòng)到點(diǎn)(1,0)時(shí),點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng)為____.
【答案】4
【解析】
設(shè)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)時(shí)點(diǎn)Q的對(duì)應(yīng)點(diǎn)是B,連接BQ,根據(jù)旋轉(zhuǎn)的性質(zhì)及同角的余角相等可得∠PAO=∠BAQ,利用SAS可證明△APO≌△AQB,可得∠ABQ=∠AOP=90°,可知點(diǎn)P運(yùn)動(dòng)過(guò)程中,∠ABQ是定值,即可確定點(diǎn)Q的運(yùn)動(dòng)軌跡是經(jīng)過(guò)點(diǎn)B且與AB垂直的線段,設(shè)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(1,0)時(shí)的對(duì)應(yīng)點(diǎn)為P1,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q1,連接QQ1,利用SAS可證明△APP1≌△AQQ1,可得PP1=QQ1,根據(jù)P、P1的坐標(biāo)求出PP1的長(zhǎng)即可得答案.
如圖,設(shè)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)時(shí)點(diǎn)Q的對(duì)應(yīng)點(diǎn)是B,
∵線AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AQ,AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AB,
∴∠PAQ=∠OAB=90°,AP=AQ,AO=AB,
∴∠PAO+∠OAQ=∠QAB+∠OAQ=90°,
∴∠PAO=∠QAB,
在△PAO和△QAB中,,
∴△PAO≌△QAB,
∴∠ABQ=∠AOP=90°,
∴點(diǎn)P運(yùn)動(dòng)過(guò)程中,∠ABQ=90°,是定值,
∴點(diǎn)Q的運(yùn)動(dòng)軌跡是經(jīng)過(guò)點(diǎn)B且垂直于AB的線段,
如圖,設(shè)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(1,0)時(shí)的對(duì)應(yīng)點(diǎn)為P1,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q1,連接QQ1,1
∴QQ1即是點(diǎn)Q運(yùn)動(dòng)的距離,
由旋轉(zhuǎn)的性質(zhì)得AP=AQ,AP1=AQ1,∠PAQ=∠P1AQ1=90°,
∴∠PAP1+∠P1AQ=∠P1AQ+∠QAQ1=90°,
∴∠PAP1=∠QAQ1,
在△APP1和△QAQ1中,,
∴△APP1≌△QAQ1,
∴PP1=QQ1,
∵點(diǎn)P從點(diǎn)(-3,0)運(yùn)動(dòng)到(1,0),
∴QQ1=PP1=1-(-3)=4
故答案為:4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個(gè)根為1,求的值;
(2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的邊OA在x軸上,OC在y軸上,且B的坐標(biāo)為(8,6),動(dòng)點(diǎn)D從B點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度每秒的速度向C點(diǎn)運(yùn)動(dòng)t秒(D不與B,C重合),連接AD,將△ABD沿AD翻折至△AB'D(B'在矩形的內(nèi)部或邊上),連接DB',DB'所在直線與AC交于點(diǎn)F,與OA所在直線交于點(diǎn)E.
(1)①當(dāng)t= 秒,B'與F重合;
②求線段CB'的取值范圍;
(2)①求EB'的長(zhǎng)度(用含t的代數(shù)式表示),并求出t的取值范圍;
②當(dāng)t為何值時(shí),△AEF是以AE為底的等腰三角形?并求出此時(shí)EC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=12,點(diǎn)E是BC邊上一點(diǎn),連接AE,將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,G為⊙O一點(diǎn),連接OD, 并延長(zhǎng)DO交CG于點(diǎn)M,CM=GM.
(1)求證:∠GCD=2∠ADC
(2)過(guò)點(diǎn)G作GN⊥CD,交CD于點(diǎn)N,交⊙O于點(diǎn)T,過(guò)點(diǎn)O作OK⊥TG,交TG于點(diǎn)K,連接TC,求證:TC=2NK
(3)在(2)的條件下,連接BG,BG=11,CD=30,求sin∠CTN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.
(1)求證方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)當(dāng)m為何值時(shí),方程的兩根互為相反數(shù)?并求出此時(shí)方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的邊長(zhǎng)為2,∠DAB=60°,E、F分別是AD、CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.連接BD.
(1)圖中有幾對(duì)三角形全等?試選取一對(duì)全等的三角形給予證明;
(2)判斷△BEF的形狀,并說(shuō)明理由.
(3)當(dāng)△BEF的面積取得最小值時(shí),試判斷此時(shí)EF與BD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,將沿直線翻折后,頂點(diǎn)恰好落在邊上的點(diǎn)處,已知,則四邊形的面積是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)C以4cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com