【題目】下列三角函數(shù)值最大的是( 。
A.tan46°
B.sin50°
C.cos50°
D.sin40°

【答案】A
【解析】解:∵tan46°>tan45°>1;而任何銳角的正弦,余弦值都小于1;
∴最大的是:tan46°
故選A.
【考點(diǎn)精析】關(guān)于本題考查的銳角三角函數(shù)的增減性,需要了解當(dāng)角度在0°~90°之間變化時(shí):(1)正弦值隨著角度的增大(或減。┒龃螅ɑ驕p。2)余弦值隨著角度的增大(或減。┒鴾p。ɑ蛟龃螅3)正切值隨著角度的增大(或減。┒龃螅ɑ驕p。4)余切值隨著角度的增大(或減。┒鴾p。ɑ蛟龃螅┎拍艿贸稣_答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上A點(diǎn)表示﹣5B點(diǎn)表示3,則AB之間有幾個(gè)單位長度( 。

A. 2B. 8C. 2D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:我們知道一元二次方程是轉(zhuǎn)化為一元一次方程來解的,例如:解方程,通過因式分解將方程化為,從而得到=0或兩個(gè)一元一次方程,通過解這兩個(gè)一元一次方程,求得原方程的解.

(1)利用上述方法解一元二次不等式:

(2)利用函數(shù)的觀點(diǎn)解一元二次不等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車近日成為市民新寵,越來越多的居民選擇共享單車作為出行的交通工具,某中學(xué)課外興趣小組為了了解某小區(qū)居民每周使用共享單車時(shí)間的情況,隨機(jī)抽取了該小區(qū)部分使用共享單車的居民進(jìn)行調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖①、圖②兩幅每周使用共享單車時(shí)間的人數(shù)統(tǒng)計(jì)圖(均不完整),請根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)本次接受問卷調(diào)查的共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;

(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對應(yīng)扇形圓心角為 度;

(3)請補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該小區(qū)共有1200名居民,請你估計(jì)該小區(qū)使用共享單車的時(shí)間在A選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知⊙OABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.

(1)求⊙O的半徑;

(2)請用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P優(yōu)弧CAB上時(shí),PBC的面積最大,請保留作圖痕跡,并求出PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,AC與BD相交于0,AE⊥BD于E,CF⊥BD于F,則圖中的全等三角形共( 。

A.5對
B.6對
C.7對
D.8對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BE∥DF的是(  )

A.AE=CF
B.BE=DF
C.∠EBF=∠FDE
D.∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組中的四條線段成比例的是( 。
A.1cm,2cm,20cm,40cm
B.1cm,2cm,3cm,4cm
C.4cm,2cm,1cm,3cm
D.5cm,10cm,15cm,20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=x2圖象向右平移2個(gè)單位再向下平移3個(gè)單位,所得圖象的解析式為

查看答案和解析>>

同步練習(xí)冊答案