【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動(dòng)點(diǎn)(不含端點(diǎn)B、C).若線段AD長為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
【答案】C
【解析】解:過A作AE⊥BC,
∵AB=AC,
∴EC=BE= BC=4,
∴AE= =3,
∵D是線段BC上的動(dòng)點(diǎn)(不含端點(diǎn)B、C).
∴3≤AD<5,
∴AD=3或4,
∵線段AD長為正整數(shù),
∴AD的可以有三條,長為4,3,4,
∴點(diǎn)D的個(gè)數(shù)共有3個(gè),
所以答案是:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥DF,直線AF分別直線BD、CE 相交于點(diǎn)G、H,∠1=∠2,
求證:∠C=∠D.
證明: ∵∠1=∠2(已知)
∠1=∠DGH( ),
∴∠2=__________( 等量代換 )
∴__________∥__________( 同位角相等,兩直線平行 )
∴∠C=___________( 兩直線平行,同位角相等 )
又∵AC∥DF__________
∴∠D=∠ABG_________
∴∠C=∠D__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著北京申辦冬奧會(huì)的成功,愈來愈多的同學(xué)開始關(guān)注我國的冰雪體育項(xiàng)目. 小健從新聞中了解到:在2018年平昌冬奧會(huì)的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀(jì)錄,收獲中國男子短道速滑隊(duì)在冬奧會(huì)上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀(jì)錄. 于是小健對同學(xué)們說:“2022年北京冬奧會(huì)上武大靖再獲金牌的可能性大小是.”你認(rèn)為小健的說法_________(填“合理”或“不合理”),理由是__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC 中,∠ABC和∠ACB的平分線交于點(diǎn)O,過點(diǎn)O作EF∥BC,交AB于點(diǎn)E,交AC于點(diǎn)F.
(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度數(shù);
(2)若△AEF的周長為8 cm,且BC=4 cm,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
2018年10月24日港珠澳大橋正式開通,它是中國建設(shè)史上里程最長、投資最多、施工難度最大的跨海橋梁項(xiàng)目,體現(xiàn)了我國逢山開路、遇水架橋的奮斗精神,體現(xiàn)了我國綜合國力、自主創(chuàng)新能力,體現(xiàn)了我國勇創(chuàng)世界一流的民族志氣. 港珠澳大橋全長55公里,跨越伶仃洋,東接香港特別行政區(qū),西接廣東省珠海市和澳門特別行政區(qū),首次實(shí)現(xiàn)了珠海、澳門與香港的跨海陸路連接,極大地縮短了三地間的距離. 通車前,小亮媽媽駕車從香港到珠海的陸路車程大約220公里,如果行駛的平均速度不變,港珠澳大橋通車后,小亮媽媽駕車從香港到珠海所用的行駛時(shí)間比原來縮短了2小時(shí)15分鐘,求小亮媽媽原來駕車從香港到珠海需要多長時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運(yùn)貨噸,輛大貨車與輛小貨車一次可以運(yùn)貨噸.
(1)求輛大貨車和輛小貨車一次可以分別運(yùn)多少噸;
(2)現(xiàn)有噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共輛把全部貨物一次運(yùn)完.求至少需要安排幾輛大貨車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
下面是小明同學(xué)“作一個(gè)角等于的直角三角形”的尺規(guī)作圖過程.
已知:線段(如圖1)
求作:,使,,
作法:如圖2,
(1)分別以點(diǎn),點(diǎn)為圓心,長為半徑畫弧,兩弧交于點(diǎn),連接
(2)連接并延長,使得;
(3)連接
就是所求的直角三角形
證明:連接.
由作圖可知,,
∴是等邊三角形(等邊三角形定義)
∴(等邊三角形每個(gè)內(nèi)角都等于)
∴
∴(等邊對等角)
在中,(三角形的內(nèi)角和等于)
∴
∴(三角形的內(nèi)角和等于),即,
∴就是所求作的直角三角形
請你參考小明同學(xué)解決問題的方式,利用圖3再設(shè)計(jì)一種“作一個(gè)角等于的直角三角形”的尺規(guī)作圖過程(保留作圖痕跡),并寫出作法,證明,及推理依據(jù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com