【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
【答案】(1);(2);(3)A、①;② ;B、①或;②或.
【解析】試題分析:(1)根據(jù)相似比的定義求解即可;(2)由勾股定理求得AB=5,根據(jù)相似比等于可求得答案;(3)A.①由矩形ABEF∽矩形FECD,列出比例式整理可得;②由每個小矩形都是全等的,可得其邊長為b和a,列出比例式整理即可;B.①分當FM是矩形DFMN的長時和當DF是矩形DFMN的長時兩種情況,根據(jù)相似多邊形的性質(zhì)列比例式求解;②由題意可知縱向2塊矩形全等,橫向3塊矩形也全等,所以DN=b,然后分當FM是矩形DFMN的長時和當DF是矩形DFMN的長時兩種情況,根據(jù)相似多邊形的性質(zhì)列比例式求解.
解:(1)∵點H是AD的中點,
∴AH=AD,
∵正方形AEOH∽正方形ABCD,
∴相似比為: ==;
故答案為:;
(2)在Rt△ABC中,AC=4,BC=3,根據(jù)勾股定理得,AB=5,
∴△ACD與△ABC相似的相似比為: =,
故答案為:;
(3)A、①∵矩形ABEF∽矩形FECD,
∴AF:AB=AB:AD,
即a:b=b:a,
∴a=b;
故答案為:
②每個小矩形都是全等的,則其邊長為b和a,
則b: a=a:b,
∴a=b;
故答案為:
B、①如圖2,
由①②可知縱向2塊矩形全等,橫向3塊矩形也全等,
∴DN=b,
Ⅰ、當FM是矩形DFMN的長時,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD=a,
∴AF=a﹣a=a,
∴AG===a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即a:b=b:a
得:a=b;
Ⅱ、當DF是矩形DFMN的長時,
∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD=,
∴AF=a﹣=,
∴AG==,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a=b;
故答案為:或;
②如圖3,
由①②可知縱向m塊矩形全等,橫向n塊矩形也全等,
∴DN=b,
Ⅰ、當FM是矩形DFMN的長時,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD=a,
∴AF=a﹣a,
∴AG===a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即a:b=b:a
得:a=b;
Ⅱ、當DF是矩形DFMN的長時,
∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD=,
∴AF=a﹣,
∴AG==,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a=b;
故答案為: b或b.
科目:初中數(shù)學 來源: 題型:
【題目】4月23日是“世界讀書日”,某校文學社團隨機調(diào)查了部分學生,就“你最喜歡的圖書類別”(只選一項)對學生課外閱讀的情況作了調(diào)查統(tǒng)計,將調(diào)查結(jié)果統(tǒng)計后繪制成如下統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)統(tǒng)計圖表提供的信息解答下列問題:
初中生課外閱讀情況調(diào)查統(tǒng)計表
種類 | 頻數(shù) | 頻率 |
卡通畫 | a | 0.56 |
時文雜志 | 32 | b |
武俠小說 | c | 0.15 |
文學名著 | 26 | d |
(1)這次隨機調(diào)查了幾名學生?統(tǒng)計表中a,d各代表什么數(shù)值?
(2)試估計該校1500名學生中有多少名同學最喜歡文學名著類書籍?
(3)結(jié)合以上統(tǒng)計數(shù)據(jù),請你站在文學社團的立場發(fā)表一下你的看法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點A(8,0),直線y=-3x+6與x軸交于點B,與y軸交于點D,且兩直線交于點C(4,m).
(1)求m的值及一次函數(shù)的解析式;
(2)求△ACD的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,∠B<∠C,AD,AE分別是△ABC的高和角平分線,
(1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)
(2)寫出∠DAE、∠B、∠C的數(shù)量關系: ,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)一個兩位正整數(shù),a表示十位上的數(shù)字,b表示個位上的數(shù)字(a≠b,ab≠0),則這個兩位數(shù)用多項式表示為 (含a、b的式子);若把十位、個位上的數(shù)字互換位置得到一個新兩位數(shù),則這兩個兩位數(shù)的和一定能被 整除,這兩個兩位數(shù)的差一定能被 整除.
(2)一個三位正整數(shù)F,各個數(shù)位上的數(shù)字互不相同且都不為0.若從它的百位、十位、個位上的數(shù)字中任意選擇兩個數(shù)字組成6個不同的兩位數(shù).若這6個兩位數(shù)的和等于這個三位數(shù)本身,則稱這樣的三位數(shù)F為“友好數(shù)”,例如:132是“友好數(shù)”.
一個三位正整數(shù)P,各個數(shù)位上的數(shù)字互不相同且都不為0,若它的十位數(shù)字等于百位數(shù)字與個位數(shù)字的和,則稱這樣的三位數(shù)P為“和平數(shù)”;
①直接判斷123是不是“友好數(shù)”?
②直接寫出共有 個“和平數(shù)”;
③通過列方程的方法求出既是“和平數(shù)”又是“友好數(shù)”的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點同時從點出發(fā),分別在,上運動,若點的運動速度是每秒2個單位長度,且是點運動速度的2倍,當其中一個點到達終點時,停止一切運動.以為對稱軸作的對稱圖形.點恰好在上的時間為__秒.在整個運動過程中,與矩形重疊部分面積的最大值為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種成本為40元千克的商品,若按50元千克銷售,一個月可售出500千克,現(xiàn)打算漲價銷售,據(jù)市場調(diào)查,漲價x元時,月銷售量為m千克,m是x的一次函數(shù),部分數(shù)據(jù)如下表:
觀察表中數(shù)據(jù),直接寫出m與x的函數(shù)關系式:_______________:當漲價5元時,計算可得月銷售利潤是___________元;
當售價定多少元時,會獲得月銷售最大利潤,求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com