【題目】我國古代數(shù)學的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學家楊輝揭示了二項和的展開式的各項系數(shù)規(guī)律,比歐洲的發(fā)現(xiàn)早三百年,為紀念楊輝的功績,世人稱如圖中右圖叫楊輝三角。

1)觀察楊輝三角規(guī)律,依次寫出楊輝三角行中從左到右的各數(shù);

2)請運用冪的意義和多項式乘法法則,按如下要求展開下列各式,以驗證楊輝三角第四行的規(guī)律:展開后各項按字母降冪、升冪排列

3)解不等式

【答案】1、、、、;(2)見解析;(3

【解析】

1)由規(guī)律得到第八行的各數(shù)即可;

2)根據多項式乘多項式法則進行計算、驗證即可;

4)根據運用楊輝三角展開,再根據解不等式的方法求解即可.

1)如圖所示:

所以第八行的各數(shù)分別為:、、、、、、

2

,

顯然滿足楊輝三角第四行系數(shù).

3)運用楊輝三角展開,解不等式得:

x4+4x3+6x2+4x+1-4(x3+3x2+3x+1)>x4

x4+4x3+6x2+4x+1-4x3-12x2-12x-4>x4

-10x>-2019

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)解不等式組:
(2)化簡:(x﹣ )÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線 y=x﹣1與坐標軸交于A、B兩點,點C在x軸上,若△ABC為等腰三角形且SABC= ,則點C的坐標為( )
A.、(0,0 )
B.(1﹣ ,0)或( 1,0)
C.、( +1,0 )
D.、(﹣ ﹣1,0)或(﹣ +1,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,回答問題
在邊長為1的正方形ABCD中,E是AB的中點,CF⊥DE,F(xiàn)為垂足.

(1)△CDF與△DEA是否相似?說明理由;
(2)求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=3是方程 的一個根,求k的值和方程其余的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題原型:如圖①,在銳角中,ADBCD,在AD上取點E,使,連結BE.求證:.問題拓展:如圖②,在問題原型的條件下,的中點,連結并延長至點,使,連結.

圖①圖②

1)判斷線段的大小關系,并說明理由.(2)若,直接寫出兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實數(shù)a,b,c在數(shù)軸上對應的點如圖所示,則下列式子中正確的是( )

A.ac>bc
B.|a﹣b|=a﹣b
C.﹣a<﹣b<c
D.﹣a﹣c>﹣b﹣c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關系和位置關系;(不要求證明)
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷予以證明;
(3)如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.將直角尺的頂點放在P處,直角尺的兩邊分別交AB,BC于點E,F(xiàn),連接EF(如圖①).

(1)當點E與點B重合時,點F恰好與點C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點P順時針旋轉,當點E和點A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點經過的路線長.

查看答案和解析>>

同步練習冊答案