【題目】在平面直角坐標(biāo)系中,已知拋物線yax2+bx+ca≠0)經(jīng)過點(diǎn)A1,0.B4,0),C0,2)三點(diǎn),直線ykx+t經(jīng)過B.C兩點(diǎn),點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),過點(diǎn)Dy軸的平行線,與直線BC相交于點(diǎn)E

1)求直線和拋物線的解析式;

2)當(dāng)點(diǎn)D在直線BC下方的拋物線上運(yùn)動(dòng),使線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo);

3)點(diǎn)D在運(yùn)動(dòng)過程中,若使O.C.D.E為頂點(diǎn)的四邊形為平行四邊形時(shí),請(qǐng)直接寫出滿足條件的所有點(diǎn)D的坐標(biāo).

【答案】(1)yx2x+2;(2)D2,﹣1);(3)點(diǎn)D的坐標(biāo)是(2,﹣1)或(2+23)或(22,3+)時(shí),都可以使O.C.D.E為頂點(diǎn)的四邊形為平行四邊形.

【解析】

1)利用待定系數(shù)法求解可得;

2)設(shè)點(diǎn)D坐標(biāo)為(m,m2-m+2),則E點(diǎn)的坐標(biāo)為(m,-m+2),由DE=-m+2-m2-m+2=-m2+2m=-m-22+2可得答案;

3)分點(diǎn)DDE上方和下方兩種情況,用m的代數(shù)式表示出DE的長(zhǎng)度,依據(jù)DE=2得出關(guān)于m的方程,解之可得.

1)把點(diǎn)B4,0),C02)代入直線ykx+t,

得:,解得,

y=﹣x+2;

把點(diǎn)A10.B4,0),C0,2)代入yax2+bx+c,

得:,解得,

yx2x+2;

2)設(shè)點(diǎn)D坐標(biāo)為(mm2m+2),E點(diǎn)的坐標(biāo)為(m,﹣m+2),

DE=(﹣m+2)﹣(m2m+2)=﹣m2+2m=﹣m22+2,

∴當(dāng)m2時(shí),DE的長(zhǎng)最大,為2,

當(dāng)m2時(shí),m2m+2=﹣1,

D2,﹣1);

3)①當(dāng)DE下方時(shí),如(2)中,DE=﹣m2+2mOC2,OCDE

∴當(dāng)DEOC時(shí),四邊形OCED為平行四邊形,

則﹣m2+2m2,解得m2,此時(shí)D2,﹣1);

②當(dāng)DE上方時(shí),DE=(m2m+2)﹣(﹣m+2)=m22m,

m22m2,解得m2,

∴此時(shí)D2+23)或(22,3+),

綜上所述,點(diǎn)D的坐標(biāo)是(2,﹣1)或(2+2,3)或(223+)時(shí),都可以使O.C.D.E為頂點(diǎn)的四邊形為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2l3,一等腰直角三角形ABC的三個(gè)頂點(diǎn)A,B,C分別在l1,l2,l3上,∠ACB=90°,ACl2與點(diǎn)D.已知l1l2的距離為1l2l3的距離為3,則線段CD的長(zhǎng)等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1yx+12x軸、y軸分別交于A、B兩點(diǎn),直線l2x軸、y軸分別交于C、B兩點(diǎn),且ABBC34

1)求直線l2的解析式,并直接判斷△ABC的形狀(不需說明理由);

2)如圖1,P為直線l1上一點(diǎn),橫坐標(biāo)為12,Q為直線l2上一動(dòng)點(diǎn),當(dāng)PQ+CQ最小時(shí),將線段PQ沿射線PA方向平移,平移后PQ的對(duì)應(yīng)點(diǎn)分別為P'、Q',當(dāng)OQ'+BQ'最小時(shí),求點(diǎn)Q'的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極繪就我市“一福地、四名城”建設(shè)的宏偉藍(lán)圖,某鎮(zhèn)大力發(fā)展旅游業(yè),一店鋪專門售賣地方特產(chǎn)“曲山老鵝”,以往銷售數(shù)據(jù)表明,該“曲山老鵝”每天銷售數(shù)量y(只)與銷售單價(jià)x(元)滿足一次函數(shù)y=-x+110,每只“曲山老鵝”各項(xiàng)成本合計(jì)為20/只.

1)該店鋪“曲山老鵝”銷售單價(jià)x定為多少時(shí),每天獲利最大?最大利潤(rùn)是多少?

2)該店店主關(guān)心教育,決定今后的一段時(shí)間從每天的銷售利潤(rùn)中捐出200元給當(dāng)?shù)貙W(xué)校作為本學(xué)期優(yōu)秀學(xué)生的獎(jiǎng)勵(lì)資金,為了保證該店捐款后每天剩余利潤(rùn)不低于4000元,試確定該“曲山老鵝”銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號(hào)召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對(duì)綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問題:

(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;

(2)興趣小組準(zhǔn)備從“不滿意”的4位群眾中隨機(jī)選擇2位進(jìn)行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請(qǐng)用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB=4,BC=3,點(diǎn)EAB的中點(diǎn),將矩形ABCD沿CE折疊,使得點(diǎn)B落到點(diǎn)F的位置.

(1)求證AFCE.

(2)AF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝即將到來的“三月三”壯族傳統(tǒng)節(jié)日,某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績(jī),并制作成如下圖表:

請(qǐng)根據(jù)如上圖表提供的信息,解答下列問題:

1)這次隨機(jī)抽查了 名學(xué)生,表中的數(shù)

2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段所對(duì)應(yīng)扇形的圓心角為 度;

4)全校共有名學(xué)生參加比賽,估計(jì)該校成績(jī)范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則ab、mn的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案