【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分ABC的周長,則DE的長是_____

【答案】

【解析】如圖,延長BCM,使CM=CA,連接AM,作CNAMN,根據(jù)題意得到ME=EB,根據(jù)三角形中位線定理得到DE=AM,根據(jù)等腰三角形的性質(zhì)求出∠ACN,根據(jù)正弦的概念求出AN,計(jì)算即可.

如圖,延長BCM,使CM=CA,連接AM,作CNAMN,

DE平分ABC的周長, AD=DB,

BE=CE+AC,

ME=EB,

AD=DB,

DE=AM,DEAM,

∵∠ACB=60°,

∴∠ACM=120°,

CM=CA,

∴∠ACN=60°,AN=MN,

AN=ACsinACN=,

AM=,

DE=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,本市新建一座圓形人工湖,為測量該湖的半徑,小杰和小麗沿湖邊選取A,B,C三根木柱,使得A,B之間的距離與A,C之間的距離相等,并測得BC長為120米,ABC的距離為4米,請你幫他們求出該湖的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點(diǎn)M(3,﹣)和點(diǎn)N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點(diǎn)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDCB中,若∠ACB=∠DBC,則不能證明兩個(gè)三角形全等的條件是( )

A.ABC=∠DCBB.A=∠DC.AB=DCD.AC=DB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的直觀三角形”.

(1)拋物線y=x2直觀三角形   

A.等腰三角形 B.等邊三角形 C.直角三角形 D.等腰直角三角形

(2)若拋物線y=ax2+2ax﹣3a直觀三角形是直角三角形,求a的值;

(3)如圖,面積為12的矩形ABCO的對角線OBx軸的正半軸上,ACOB相交于點(diǎn)E,若ABE是拋物線y=ax2+bx+c直觀三角形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+EDF=180°,以①②③中的兩個(gè)作為條件,另一個(gè)作為結(jié)論,可以使結(jié)論成立的有幾個(gè)(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門票誰都想去,最后商定通過轉(zhuǎn)盤游戲決定游戲規(guī)則是:轉(zhuǎn)動下面平均分成三個(gè)扇形且標(biāo)有不同顏色的轉(zhuǎn)盤,轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止

1轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,指針?biāo)割伾灿袔追N情況?通過畫樹狀圖或列表法加以說明;

2你認(rèn)為這個(gè)游戲公平嗎?請說明理由

查看答案和解析>>

同步練習(xí)冊答案