【題目】如圖,以ABCO的頂點(diǎn)O為原點(diǎn),邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點(diǎn)A、C的坐標(biāo)分別是(2,4)、(3,0),過(guò)點(diǎn)A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是 .
【答案】9
【解析】解:∵四邊形ABCD是平行四邊形,A、C的坐標(biāo)分別是(2,4)、(3,0),
∴點(diǎn)B的坐標(biāo)為:(5,4),
把點(diǎn)A(2,4)代入反比例函數(shù)y=得:k=8,
∴反比例函數(shù)的解析式為:y=;
設(shè)直線BC的解析式為:y=kx+b,
把點(diǎn)B(5,4),C(3,0)代入得:,
解得:k=2,b=﹣6,
∴直線BC的解析式為:y=2x﹣6,
解方程組 得:
,或 (不合題意,舍去),
∴點(diǎn)D的坐標(biāo)為:(4,2),
即D為BC的中點(diǎn),
∴△ABD的面積=平行四邊形ABCD的面積,
∴四邊形AOCD的面積=平行四邊形ABCO的面積﹣△ABD的面積=3×4﹣×3×4=9;
所以答案是:9.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用比例系數(shù)k的幾何意義和平行四邊形的性質(zhì),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿A→D→C運(yùn)動(dòng),點(diǎn)P從點(diǎn)A出發(fā)的同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q也停止運(yùn)動(dòng).設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),PQ∥CD?
(2)從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),△PQC為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽(tīng)寫(xiě)大賽”,對(duì)九年級(jí)一班、二班各10名學(xué)生進(jìn)行漢字聽(tīng)寫(xiě)測(cè)試.計(jì)分采用10分制(得分均取整數(shù)),成績(jī)達(dá)到6分或6分以上為及格,得到9分為優(yōu)秀,成績(jī)?nèi)绫?所示,并制作了成績(jī)分析表(表2).
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= ,b= ;
(2)有人說(shuō)二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認(rèn)為一班成績(jī)比二班好,請(qǐng)你給出堅(jiān)持一班成績(jī)好的兩條理由;
(3)一班、二班獲滿(mǎn)分的中同學(xué)性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿(mǎn)分的同學(xué)中各抽1名同學(xué)參加“漢字聽(tīng)寫(xiě)大賽”,用樹(shù)狀圖或列表法求出恰好抽到1男1女兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開(kāi)始沿BO方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).
(1)直接寫(xiě)出拋物線的解析式: ;
(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)計(jì)算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;
(2)解不等式組,并在數(shù)軸上表示不等式組的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)籃球、足球、排球、羽毛球、乒乓球這五種球類(lèi)運(yùn)動(dòng)的喜愛(ài)情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了以下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)共抽取名學(xué)生進(jìn)行問(wèn)卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中“籃球”所對(duì)應(yīng)的圓心角的度數(shù);
(3)該校共有2500名學(xué)生,請(qǐng)估計(jì)全校學(xué)生喜歡足球運(yùn)動(dòng)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在天水市漢字聽(tīng)寫(xiě)大賽中,10名學(xué)生得分情況如表
人數(shù) | 3 | 4 | 2 | 1 |
分?jǐn)?shù) | 80 | 85 | 90 | 95 |
那么這10名學(xué)生所得分?jǐn)?shù)的中位數(shù)和眾數(shù)分別是( 。
A.85和82.5
B.85.5和85
C.85和85
D.85.5和80
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com