【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).

【答案】②④
【解析】解:
∵二次函數(shù)開口向下,且與y軸的交點(diǎn)在x軸上方,
∴a<0,c>0,
∵對(duì)稱軸為x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,
故①、③都不正確;
∵當(dāng)x=﹣1時(shí),y<0,
∴a﹣b+c<0,
故②正確;
由拋物線的對(duì)稱性可知拋物線與x軸的另一交點(diǎn)在2和3之間,
∴當(dāng)x=2時(shí),y>0,
∴4a+2b+c>0,
故④正確;
∵拋物線開口向下,對(duì)稱軸為x=1,
∴當(dāng)x<1時(shí),y隨x的增大而增大,
∵﹣2<﹣
∴y1<y2 ,
故⑤不正確;
綜上可知正確的為②④,
所以答案是:②④.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊△ADE,則∠BED的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:﹣(﹣2)+(1+π)0﹣||+;
(2)先化簡(jiǎn),再求值:(x+2)(x﹣2)﹣x(x+3),其中x=﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AC平分∠BAD,AD⊥DC,垂足為D,OE⊥AC,垂足為E.

(1)求證:DC是⊙O的切線;
(2)若OE=cm,AC=cm,求DC的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣2|++2﹣1﹣cos60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABCO的頂點(diǎn)O為原點(diǎn),邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點(diǎn)A、C的坐標(biāo)分別是(2,4)、(3,0),過點(diǎn)A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015廣州)如圖,AC是⊙O的直徑,點(diǎn)B在⊙O上,∠ACB=30°

(1)利用尺規(guī)作∠ABC的平分線BD,交AC于點(diǎn)E,交⊙O于點(diǎn)D,連接CD(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖形中,求△ABE與△CDE的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案