【題目】如圖,已知拋物線y= x2 (b+1)x+ (b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.
(1)點B的坐標為 , 點C的坐標為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你進一步探索在第一象限內是否存在點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

【答案】
(1)(b,0);(0,
(2)

解:存在,

假設存在這樣的點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形.

設點P的坐標為(x,y),連接OP.

則S四邊形PCOB=SPCO+SPOB= x+ by=2b,

∴x+4y=16.

過P作PD⊥x軸,PE⊥y軸,垂足分別為D、E,

∴∠PEO=∠EOD=∠ODP=90°.

∴四邊形PEOD是矩形.

∴∠EPD=90°.

∴∠EPC=∠DPB.

∴△PEC≌△PDB,∴PE=PD,即x=y.

解得

由△PEC≌△PDB得EC=DB,即 =b﹣ ,

解得b= >2符合題意.

∴P的坐標為(


(3)

解:假設存在這樣的點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似.

∵∠QAB=∠AOQ+∠AQO,

∴∠QAB>∠AOQ,∠QAB>∠AQO.

∴要使△QOA與△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x軸.

∵b>2,

∴AB>OA,

∴∠Q0A>∠ABQ.

∴只能∠AOQ=∠AQB.此時∠OQB=90°,

由QA⊥x軸知QA∥y軸.

∴∠COQ=∠OQA.

∴要使△QOA與△OQC相似,只能∠QCO=90°或∠OQC=90°.

(I)當∠OCQ=90°時,△CQO≌△QOA.

∴AQ=CO=

由AQ2=OAAB得:( 2=b﹣1.

解得:b=8±4

∵b>2,

∴b=8+4

∴點Q的坐標是(1,2+ ).

(II)當∠OQC=90°時,△OCQ∽△QOA,

,即OQ2=OCAQ.

又OQ2=OAOB,

∴OCAQ=OAOB.即 AQ=1×b.

解得:AQ=4,此時b=17>2符合題意,

∴點Q的坐標是(1,4).

∴綜上可知,存在點Q(1,2+ )或Q(1,4),使得△QCO,△QOA和△QAB中的任意兩個三角形均相似.


【解析】解:(1)令y=0,即y= x2 (b+1)x+ =0,
解得:x=1或b,
∵b是實數(shù)且b>2,點A位于點B的左側,
∴點B的坐標為(b,0),
令x=0,
解得:y=
∴點C的坐標為(0, ),
故答案為:(b,0),(0, );
(1)令y=0,即y= x2 (b+1)x+ =0,解關于x的一元二次方程即可求出A,B橫坐標,令x=0,求出y的值即C的縱坐標;(2)存在,先假設存在這樣的點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形.設點P的坐標為(x,y),連接OP,過P作PD⊥x軸,PE⊥y軸,垂足分別為D、E,利用已知條件證明△PEC≌△PDB,進而求出x和y的值,從而求出P的坐標;(3)存在,假設存在這樣的點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似,有條件可知:要使△QOA與△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x軸;要使△QOA與△OQC相似,只能∠QCO=90°或∠OQC=90°;再分別討論求出滿足題意Q的坐標即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標中,△ABC三個頂點坐標為A(﹣ ,0)、B( ,0)、C(0,3).

(1)求△ABC內切圓⊙D的半徑.
(2)過點E(0,﹣1)的直線與⊙D相切于點F(點F在第一象限),求直線EF的解析式.
(3)以(2)為條件,P為直線EF上一點,以P為圓心,以2 為半徑作⊙P.若⊙P上存在一點到△ABC三個頂點的距離相等,求此時圓心P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點).已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設AE=BF=x(cm).
(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】海南有豐富的旅游產品.某校九年級(1)班的同學就部分旅游產品的喜愛情況對游客隨機調查,要求游客在列舉的旅游產品中選出喜愛的產品,且只能選一項.以下是同學們整理的不完整的統(tǒng)計圖:
根據(jù)以上信息完成下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)隨機調查的游客有人;在扇形統(tǒng)計圖中,A部分所占的圓心角是度;
(3)請根據(jù)調查結果估計在1500名游客中喜愛攀錦的約有人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)如圖(1)點P是正方形ABCD的邊CD上一點(點P與點C,D不重合),點E在BC的延長線上,且CE=CP,連接BP,DE.求證:△BCP≌△DCE;
(2)直線EP交AD于F,連接BF,F(xiàn)C.點G是FC與BP的交點. ①若CD=2PC時,求證:BP⊥CF;
②若CD=nPC(n是大于1的實數(shù))時,記△BPF的面積為S1 , △DPE的面積為S2 . 求證:S1=(n+1)S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某月的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置的9個數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個數(shù)的和為( 。

A. 69 B. 84 C. 189 D. 207

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B與∠C的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E.若AB=5,AC=4,則△ADE的周長是

查看答案和解析>>

同步練習冊答案