【題目】如圖,正方形的邊長為,,,,分別是,,,上的動點,且.
(1)求證:四邊形是正方形;
(2)求四邊形面積的最小值.
【答案】(1)詳見解析;(2)四邊形面積的最小值為32.
【解析】
(1)由正方形的性質得出.∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,證出AH=BE=CF=DG,由SAS證明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,
∠AEH=∠BFE,證出四邊形EFGH是菱形,再證出∠HEF=90°,即可得出結論;
(2)設四邊形EFGH面積為S,AE=xcm,則BE=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,S是x的二次函數(shù),容易得出四邊形EFGH面積的最小值.
證明:(1)∵四邊形是正方形,
∴,.
∵,∴.
∴,
∴,,,
∴四邊形是菱形,
∵,,,
∴四邊形是正方形.
(2)設,
則,
S四邊形EFGH,
∴當時,四邊形面積的最小值為32.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.
(1)求反比例函數(shù)的表達式
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明根據學習函數(shù)的經驗,對函數(shù)y=+1的圖象與性質進行了探究.下面是小明的探究過程,請補充完整:
(1)函數(shù)y=+1的自變量x的取值范圍是 ;
(2)下表列出了y與x的幾組對應值,請寫出m,n的值:m= ,n= ;
x | … | ﹣ | ﹣1 | ﹣ | 0 | 2 | 3 | … | ||||
y | … | m | 0 | ﹣1 | n | 2 | … |
(3)在如圖所示的平面直角坐標系中,描全上表中以各對對應值為坐標的點,并畫出該函數(shù)的圖象.
(4)結合函數(shù)的圖象,解決問題:
①寫出該函數(shù)的一條性質:
②當函數(shù)值+1>時,x的取值范圍是:
③方程+1=x的解為:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分別是AC、AB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為2cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為4cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s.解答下列問題:
(1)當t為何值時,以點E、P、Q為頂點的三角形與△ADE相似?
(2)當t為何值時,△EPQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是矩形內的任意一點,連接、、、, 得到 , , , ,設它們的面積分別是,,,, 給出如下結論:①②③若,則④若,則點在矩形的對角線上.其中正確的結論的序號是( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在直角坐標系中△ABC的頂點A、B、C三點坐標為A(7,1),B(8,2),C(9,0).
(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A'B'C'(要求與△ABC在P點同一側);
(2)直接寫出A'點的坐標;
(3)直接寫出△A'B'C'的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質地完全相同的乒乓球,球面上分別標有數(shù)-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負數(shù)的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).
(1)求這個二次函數(shù)的表達式;
(2)若P是第四象限內這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC.
①求線段PM的最大值;
②當△PCM是以PM為一腰的等腰三角形時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(教材呈現(xiàn))
下圖是華師版九年級上冊數(shù)學教材第79頁的部分內容.
請根據教材內容,結合圖①,寫出完整的解題過程.
(結論應用)
(1)在圖①中,若AB=2,∠AOD=120°,則四邊形EFGH的面積為______.
(2)如圖②,在菱形ABCD中,∠BAD=120°,O是其內任意一點,連接O與菱形ABCD各頂點,四邊形EFGH的頂點E、F、G、H分別在AO、BO、CO、DO上,EO=2AE,EF∥AB∥GH,且EF=GH,若△EFO與△GHO的面積和為,則菱形ABCD的周長為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com