【題目】已知關(guān)于x的方程x2+ax+b=0(b≠0)與x2+cx+d=0都有實(shí)數(shù)根,若這兩個(gè)方程有且只有一個(gè)公共根,且ab=cd,則稱它們互為“同根輪換方程”.如x2-x-6=0與x2-2x-3=0互為“同根輪換方程”.
(1)若關(guān)于x的方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,求m的值;
(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+b=0,p、q分別是方程①和方程②的實(shí)數(shù)根,且p≠q,b≠0.試問方程①和方程②是否能互為“同根輪換方程”?如果能,用含a的代數(shù)式分別表示p和q;如果不能,請(qǐng)說明理由.
【答案】(1);(2)能,①, ②, ③,
【解析】試題分析:(1)根據(jù)方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,得到m、n之間的關(guān)系為4m=-6n.然后設(shè)t是公共根,則有t2+4t+m=0,t2-6t+n=0,于是得到結(jié)論;(2)根據(jù)x2-x-6=0與x2-2x-3=0互為“同根輪換方程”,得到它們的公共根是3,從而得到當(dāng)p=q=-3a時(shí),有9a2-3a2+b=0.解得,b=-6a2.解得,p=-3a,x1=2a;q=-3a,x2=a,從而證得方程x2+ax+b=0(b≠0)與x2+2ax+b=0互為“同根輪換方程”.
試題解析:(1)∵方程x2+4x+m=0與x26x+n=0互為“同根輪換方程”,
∴4m=6n.
設(shè)t是公共根,則有t2+4t+m=0,t26t+n=0.
解得,t=.
∵4m=6n.∴t=.
∴()2+4()+m=0.
∴m=12.
(2)∵x2x6=0與x22x3=0互為“同根輪換方程”,
它們的公共根是3.
而3=(3)×(1)=3×(1).
又∵x2+x6=0與x2+2x3=0互為“同根輪換方程”。
它們的公共根是3.
而3=3×1.
∴當(dāng)p=q=3a時(shí),
有9a23a2+b=0.
解得:b=6a2.
∴x2+ax6a2=0,x2+2ax3a2=0.
解得:p=3a,x1=2a,q=3a,x2=a.
∵b≠0,
∴6a2≠0,
∴a≠0.
∴2a≠a.即x1≠x2.
又∵2a×b=ab,
∴方程x2+ax+b=0(b≠0)與x2+2ax+12b=0能為“同根輪換方程”,p=q=3a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程求解
(1)m為何值時(shí),關(guān)于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.
(2)已知|a﹣3|+(b+1)2=0,代數(shù)式的值比b﹣a+m多1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng).記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)關(guān)系的大致圖像是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品進(jìn)價(jià)為a元,商店將價(jià)格提高30%作零售價(jià)銷售,這時(shí)一件商品的售價(jià)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng).如果點(diǎn)E、F同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s)當(dāng)t=s時(shí),以A、C、E、F為頂點(diǎn)四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是ABCD對(duì)角線AC上兩點(diǎn),AE=CF.
(1)求證:△ABE≌△CDF;
(2)連結(jié)DE,BF,求證:四邊形DEBF是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com