【題目】如圖,已知四邊形ABCD內接于圓O,連結BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長.
【答案】
(1)證明:∵四邊形ABCD內接于圓O,
∴∠DCB+∠BAD=180°,
∵∠BAD=105°,
∴∠DCB=180°﹣105°=75°,
∵∠DBC=75°,
∴∠DCB=∠DBC=75°,
∴BD=CD;
(2)解:∵∠DCB=∠DBC=75°,
∴∠BDC=30°,
由圓周角定理,得, 的度數(shù)為:60°,
故 = = =π,
答: 的長為π.
【解析】此題主要考查了弧長公式應用以及圓周角定理等知識,根據(jù)題意得出∠DCB的度數(shù)是解題關鍵.(1)直接利用圓周角定理得出∠DCB的度數(shù),再利用∠DCB=∠DBC求出答案;(2)首先求出 的度數(shù),再利用弧長公式直接求出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結論:AC+BC= CD.
簡單應用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(1)如圖1.過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大小;
(2)如圖2,D為 上一點,且OD經(jīng)過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個同心圓,大圓的弦AB與小圓相切于點P,大圓的弦CD經(jīng)過點P,且CD=13,PD=4,則兩圓組成的圓環(huán)的面積是( )
A.16π
B.36π
C.52π
D.81π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,A,B,C三點的坐標為( ,0)、(3 ,0)、(0,5),點D在第一象限,且∠ADB=60°,則線段CD的長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC、△DCE、△FEG為等邊三角形,邊長分別為2、3、5,且從左至右如圖排列,連接BF,交DC、DE分別于M、N兩點,則△DMN的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com