【題目】如圖,AC⊥BC,AC=BC,D是BC上一點(diǎn),連接AD,與∠ACB的平分線交于點(diǎn)E,連接BE.若SACE= ,SBDE= ,則AC=

【答案】2
【解析】解:過(guò)E作AC,BC的垂線,垂足分別為F,G,
設(shè)BC=4x,則AC=4x,
∵CE是∠ACB的平分線,EF⊥AC,EG⊥BC,
∴EF=EG,又SACE= ,SBDE= ,
∴BD= AC=x,
∴CD=3x,
∵四邊形EFCG是正方形,
∴EF=FC,
∵EF∥CD,
= ,即 =
解得,EF= x,
×4x× x= ,
解得,x= ,
則AC=4x=2,
所以答案是:2.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用角平分線的性質(zhì)定理和相似三角形的判定與性質(zhì),掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,∠BCD的平分線CFABF,∠ADC的平分線DG交邊ABG.

(1)線段AFGB相等嗎?

(2)當(dāng)四邊形ABCD滿足什么條件時(shí),△EFG為等腰直角三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與其價(jià)格x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如表:

x(元)

180

260

280

300

y(間)

100

60

50

40


(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每日空置的客房需支出各種費(fèi)用60元,當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大值.(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入﹣當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

概念理解:如圖,在四邊形ABCD中,如果AB=ADCB=CD,那么四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.

性質(zhì)探究:如圖,垂美四邊形ABCD兩組對(duì)邊AB、CDBC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.

問(wèn)題解決:如圖,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG 和正方形ABDE,連結(jié)CE、BG、GE.若AC=2,AB=5,則求證:△AGB≌△ACE;

②GE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形

(1)求證:△DFB是等腰三角形;
(2)若DA= AF,求證:CF⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上網(wǎng)流量、語(yǔ)音通話是手機(jī)通信消費(fèi)的兩大主體,目前,某通信公司推出消費(fèi)優(yōu)惠新招﹣﹣“定制套餐”,消費(fèi)者可根據(jù)實(shí)際情況自由定制每月上網(wǎng)流量與語(yǔ)音通話時(shí)間,并按照二者的階梯資費(fèi)標(biāo)準(zhǔn)繳納通信費(fèi).下表是流量與語(yǔ)音的階梯定價(jià)標(biāo)準(zhǔn).

流量階梯定價(jià)標(biāo)準(zhǔn)

使用范圍

階梯單價(jià)(元/MB)

1﹣100MB

a

101﹣500MB

0.07

501﹣20GB

b

語(yǔ)音階梯定價(jià)標(biāo)準(zhǔn)

使用范圍

階梯資費(fèi)(元/分鐘)

1﹣500分鐘

0.15

501﹣1000分鐘

0.12

1001﹣2000分鐘

m

【小提示:階梯定價(jià)收費(fèi)計(jì)算方法,如600分鐘語(yǔ)音通話費(fèi)=0.15×500+0.12×(600﹣500)=87元】
(1)甲定制了600MB的月流量,花費(fèi)48元;乙定制了2GB的月流量,花費(fèi)120.4元,求a,b的值.(注:1GB=1024MB)
(2)甲的套餐費(fèi)用為199元,其中含600MB的月流量;丙的套餐費(fèi)用為244.2元,其中包含1GB的月流量,二人均定制了超過(guò)1000分鐘的每月通話時(shí)間,并且丙的語(yǔ)音通話時(shí)間比甲多300分鐘,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究

問(wèn)題1 已知:如圖1,三角形ABC中,點(diǎn)DAB邊的中點(diǎn),AE⊥BC,BF⊥AC,垂足分別為點(diǎn)E,F(xiàn),AE,BF交于點(diǎn)M,連接DE,DF.若DE=kDF,則k的值為   

拓展

問(wèn)題2 已知:如圖2,三角形ABC中,CB=CA,點(diǎn)DAB邊的中點(diǎn),點(diǎn)M在三角形ABC的內(nèi)部,且∠MAC=∠MBC,過(guò)點(diǎn)M分別作ME⊥BC,MF⊥AC,垂足分別為點(diǎn)E,F(xiàn),連接DE,DF.求證:DE=DF.

推廣

問(wèn)題3 如圖3,若將上面問(wèn)題2中的條件“CB=CA”變?yōu)?/span>“CB≠CA”,其他條件不變,試探究DEDF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“2016國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)”于5月25日至5月29日在貴陽(yáng)舉行.參展內(nèi)容為:A﹣經(jīng)濟(jì)和社會(huì)發(fā)展;B﹣產(chǎn)業(yè)與應(yīng)用;C﹣技術(shù)與趨勢(shì);D﹣安全和隱私保護(hù);E﹣電子商務(wù),共五大板塊,為了解觀眾對(duì)五大板塊的“關(guān)注情況”,某機(jī)構(gòu)進(jìn)行了隨機(jī)問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息,解答下列問(wèn)題:

(1)本次隨機(jī)調(diào)查了多少名觀眾?
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“D﹣安全和隱私保護(hù)”所對(duì)應(yīng)的扇形圓心角的度數(shù).
(3)據(jù)相關(guān)報(bào)道,本次博覽會(huì)共吸引力90000名觀眾前來(lái)參觀,請(qǐng)估計(jì)關(guān)注“E﹣電子商務(wù)”的人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案