【題目】如圖,一條直線上有兩只螞蟻,甲螞蟻在點A處,乙螞蟻在點B處,假設兩只螞蟻同時出發(fā),爬行方向只能沿直線AB在“向左”或“向右”中隨機選擇,并且甲螞蟻爬行的速度比乙螞蟻快.(1)甲螞蟻選擇“向左”爬行的概率為________;
(2)利用列表或畫樹狀圖的方法求兩只螞蟻開始爬行后會“觸碰到”的概率.
【答案】(1);(2).
【解析】試題分析:(1)根據概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,由爬行方向只能沿直線AB在“向左”或“向右”中隨機選擇,直接利用概率公式求解即可求得答案.
(2)根據題意畫出樹狀圖或列表,然后由圖表求得所有等可能的結果與兩只螞蟻開始爬行后會“觸碰到”的情況,再利用概率公式即可求得答案.
試題解析:解:(1)∵爬行方向只能沿直線AB在“向左”或“向右”中隨機選擇,
∴甲螞蟻選擇“向左”爬行的概率為:.
(2)畫樹狀圖得:
∵共有4種情況,由于甲螞蟻爬行的速度比乙螞蟻快,兩只螞蟻開始爬行后會“觸碰到”的2種情況:甲向右乙向右,甲向右乙向左,
∴兩只螞蟻開始爬行后會“觸碰到”的概率為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知:用3輛A型車和1輛B型車裝滿貨物一次可運貨13噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸.某物流公司現(xiàn)有35噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都裝滿貨物.
根據以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢的租車方案,并求出最少租車費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1) 令P0(2,-3),O為坐標原點,則d(O,P0)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)設P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. 若P(a,-3)到直線y=x+1的直角距離為6,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個質地均勻的正四面體的四個面上依次標有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點的橫、縱坐標,則點M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點的三角形內(包含邊界)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?
(2)若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知△ABC是等邊三角形,點P在△ABC內,點Q在△ABC外,分別連接AP、BP、AQ、CQ,∠ABP=∠ACQ, BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)連接PQ,求證△APQ是等邊三角形;
(3)連接P設△CPQ是以PQC為頂角的等腰三角形,且∠BPC=100,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農民在自己家承包的甲、乙兩片荒山上各栽了200棵蘋果樹,成活率均為96%,現(xiàn)已掛果.他隨意從甲山采摘了4棵樹上的蘋果,稱得質量(單位:千克)分別為36,40,48,36;從乙山采摘了4棵樹上的蘋果,稱得質量(單位:千克)分別為50,36,40,34,將這兩組數(shù)據組成一個樣本,回答下列問題:
(1)樣本容量是多少?
(2)樣本平均數(shù)是多少?并估算出甲、乙兩山蘋果的總產量;
(3)甲、乙兩山哪個山上的蘋果長勢較整齊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4,拋物線頂點處到邊MN的距離是4,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在邊MN上,A、D落在拋物線上.
(1)如圖建立適當?shù)淖鴺讼,求拋物線解析式;
(2)設矩形ABCD的周長為L,點C的坐標為(m,0),求L與m的關系式(不要求寫自變量取值范圍).
(3)問這樣截下去的矩形鐵皮的周長能否等于9.5,若不等于9.5,請說明理由,若等于9.5,求出嗎的值?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com