【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為 個(gè)平方單位?

【答案】
(1)解:設(shè)直線AB的解析式為y=kx+b,

由題意,得 ,

解得 ,

所以,直線AB的解析式為y=﹣ x+6


(2)解:由AO=6,BO=8得AB=10,

所以AP=t,AQ=10﹣2t,

① 當(dāng)∠APQ=∠AOB時(shí),△APQ∽△AOB.

所以 = ,

解得t= (秒),

②當(dāng)∠AQP=∠AOB時(shí),△AQP∽△AOB.

所以 = ,

解得t= (秒);

∴當(dāng)t為 秒或 秒時(shí),△APQ與△AOB相似


(3)解:過點(diǎn)Q作QE垂直AO于點(diǎn)E.

在Rt△AOB中,sin∠BAO= =

在Rt△AEQ中,QE=AQsin∠BAO=(10﹣2t) =8﹣ t,

SAPQ= APQE= t(8﹣ t),

=﹣ t2+4t= ,

解得t=2(秒)或t=3(秒).

∴當(dāng)t為2秒或3秒時(shí),△APQ的面積為 個(gè)平方單位


【解析】(1)設(shè)直線AB的解析式為y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①當(dāng)∠APQ=∠AOB時(shí),△APQ∽△AOB利用其對(duì)應(yīng)邊成比例解t.②當(dāng)∠AQP=∠AOB時(shí),△AQP∽△AOB利用其對(duì)應(yīng)邊成比例解得t.(3)過點(diǎn)Q作QE垂直AO于點(diǎn)E.在Rt△AEQ中,QE=AQsin∠BAO=(10﹣2t) =8﹣ t,再利用三角形積解得t即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的邊BC的中線,EAD的中點(diǎn),過點(diǎn)AAFBC,交BE的延長(zhǎng)線于點(diǎn)F,連接CF,BFACG.

(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;

(2)求證:CG=2AG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是不等邊△ABC的邊BC上的一點(diǎn),點(diǎn)D在邊AB或AC上,若由點(diǎn)P、D截得的小三角形與△ABC相似,那么D點(diǎn)的位置最多有(
A.2處
B.3處
C.4處
D.5處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體重情況,隨機(jī)抽取了九年級(jí)部分學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的統(tǒng)計(jì)圖表,如圖表所示,請(qǐng)根據(jù)圖表信息回答下列問題:

體重頻數(shù)分布表

組邊

體重(千克)

人數(shù)

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16

(1)填空:①m=__(直接寫出結(jié)果);

在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于__度;

(2)如果該校九年級(jí)有1000名學(xué)生,請(qǐng)估算九年級(jí)體重低于60千克的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD,BC于點(diǎn)E,F(xiàn),垂足為點(diǎn)O.
(1)連接AF,CE,求證:四邊形AFCE為菱形;
(2)求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中的x:

(1)16x2-361=0;       (2)(x-1)2=25;

(3)27=216;       (4) (x-2)3 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O中,弦AB=AC,點(diǎn)P是∠BAC所對(duì)弧上一動(dòng)點(diǎn),連接PA,PB.
(1)如圖①,把△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACQ,連接PC,求證:∠ACP+∠ACQ=180°;
(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關(guān)系.
(3)若∠BAC=120°時(shí),(2)中的結(jié)論是否成立?若是,請(qǐng)證明;若不是,請(qǐng)直接寫出它們之間的數(shù)量關(guān)系,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)手操作:如圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中的虛線剪開分成四個(gè)大小相等的長(zhǎng)方形,然后按照?qǐng)D②所示拼成一個(gè)正方形.

提出問題:

(1)觀察圖②,請(qǐng)用兩種不同的方法表示陰影部分的面積:_____________,_____________;

(2)請(qǐng)寫出三個(gè)代數(shù)式(ab)2,(ab)2,ab之間的一個(gè)等量關(guān)系:___________________________;

問題解決:根據(jù)上述(2)中得到的等量關(guān)系,解決下列問題:已知xy=8,xy=7,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MAN=15°,AB=BC=CD=DE=EF,則∠FEM=________

查看答案和解析>>

同步練習(xí)冊(cè)答案