【題目】在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).

求拋物線的表達(dá)式;

若將拋物線向下平移4個單位,點(diǎn)P平移后的對應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).

【答案】;點(diǎn)Q的坐標(biāo)為

【解析】

依據(jù)拋物線的對稱軸方程可求得b的值,然后將點(diǎn)B的坐標(biāo)代入線可求得c的值,即可求得拋物線的表達(dá)式;由平移后拋物線的頂點(diǎn)在x軸上可求得平移的方向和距離,故此,然后由點(diǎn),軸可得到點(diǎn)QP關(guān)于x對稱,可求得點(diǎn)Q的縱坐標(biāo),將點(diǎn)Q的縱坐標(biāo)代入平移后的解析式可求得對應(yīng)的x的值,則可得到點(diǎn)Q的坐標(biāo).

拋物線頂點(diǎn)A的橫坐標(biāo)是,

,即,解得

代入得:

拋物線的解析式為

拋物線向下平移了4個單位.

平移后拋物線的解析式為,

點(diǎn)OPQ的垂直平分線上.

軸,

點(diǎn)Q與點(diǎn)P關(guān)于x軸對稱.

點(diǎn)Q的縱坐標(biāo)為

代入得:,解得:

點(diǎn)Q的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個一次函數(shù)y=ax+by=bx+a(a,b為常數(shù),且ab≠0),它們在同一個坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3分別交y軸,x軸于A、B兩點(diǎn),點(diǎn)C在線段AB上,連接OC,且OCBC.(1)求線段AC的長度;

2)如圖2,點(diǎn)D的坐標(biāo)為(﹣0),過DDEBO交直線y=﹣x+3于點(diǎn)E.動點(diǎn)Nx軸上從點(diǎn)D向終點(diǎn)O勻速運(yùn)動,同時動點(diǎn)M在直線=﹣x+3上從某一點(diǎn)向終點(diǎn)G2,1)勻速運(yùn)動,當(dāng)點(diǎn)N運(yùn)動到線段DO中點(diǎn)時,點(diǎn)M恰好與點(diǎn)A重合,且它們同時到達(dá)終點(diǎn).

i)當(dāng)點(diǎn)M在線段EG上時,設(shè)EMsDNt,求st之間滿足的一次函數(shù)關(guān)系式;

ii)在i)的基礎(chǔ)上,連接MN,過點(diǎn)OOFAB于點(diǎn)F,當(dāng)MN與△OFC的一邊平行時,求所有滿足條件的s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市的某種商品一周內(nèi)每天的進(jìn)價與售價信息和實際每天的銷售量情況如圖表所示:

進(jìn)價與售價折線圖(單位:元/)

實際銷售量表(單位:斤)

日期

周一

周二

周三

周四

周五

周六

周日

銷售量

30

40

35

30

50

60

50

則下列推斷不合理的是( )

A. 該商品周一的利潤最小

B. 該商品周日的利潤最大

C. 由一周中的該商品每天售價組成的這組數(shù)據(jù)的眾數(shù)是4(/)

D. 由一周中的該商品每天進(jìn)價組成的這組數(shù)據(jù)的中位數(shù)是3(/)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地計劃用120180天(含120180天)的時間建設(shè)一項水利工程,工程需要運(yùn)送的土石方總量為360萬米

1)設(shè)平均每天的工作量為x(單位:萬米),用來表示運(yùn)輸公司完成任務(wù)所需的時間,并寫出x的取值范圍.

2)由于工程進(jìn)度的需要,實際平均每天運(yùn)送土石方是原計劃的1.2倍,工期比原計劃減少了24天,原計劃和實際平均每天運(yùn)送土石方各是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達(dá)B處,測得海島在南偏西37°的方向,求小島到海岸線的距離

(參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣4,0).

(1)該二次函數(shù)的關(guān)系式是   ,頂點(diǎn)坐標(biāo)   

(2)根據(jù)圖象回答:當(dāng)x滿足   時,y>0;

(3)在拋物線上存在點(diǎn)P,滿足SAOP=8,請直接寫出點(diǎn)P的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點(diǎn)A、C的坐標(biāo);

(2)將ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案