如圖,AB是⊙O的弦,CO⊥OA,OC交AB于點P,且PC=BC,BC是⊙O的切線嗎?證明你的結論.

【答案】分析:要證明BC是否是⊙O的切線,只要證明∠OBC的度數(shù).若該角為直角,則BC是⊙O的切線,否則不是.
解答:解:BC是⊙O的切線.
證明:∵PC=BC,
∴∠CPB=∠CBP.
又∵∠CPB=∠APO,
∴∠APO=∠CBP.
又∵BO=AO,
∴∠OAB=∠OBA,
∴∠APO+∠OAB=∠CBP+∠OBA.
又∵OA⊥CO,
∴∠APO+∠OAB=90°,
∴∠CBP+∠OBA=90°,
∴OB⊥BC.
又∵CB過半徑OB外端,
∴CB是⊙O切線.
點評:本題考查的是切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,AB是⊙O的弦,半徑OC⊥AB于點D,且AB=8m,OC=5m,則DC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的弦,⊙O半徑為5,OC⊥AB于D,交⊙O于C,且CD=2,則AB=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知:如圖,AB是⊙O的弦,半徑OC交弦AB于點P,且AB=10cm,PB=4cm,PC=2cm,則OC的長等于
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的弦,AB=10,⊙O的半徑OC⊥AB于D,如果OD:DC=3:2,那么⊙O的直徑長為
25
2
25
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的弦,OC⊥AB于點C,若AB=4,OC=1,則⊙O的半徑為(  )

查看答案和解析>>

同步練習冊答案