【題目】如圖, 是⊙的直徑, 是⊙的切線, 為切點, 交⊙于點

)若的中點,證明: 是⊙的切線.

)若, ,求的度數(shù).

【答案】證明見解析;

【解析】試題分析:(1)由ABO的直徑,得到AEB=90°,根據(jù)直角三角形的性質(zhì)得到AD=DE,求得DAE=∠AED,根據(jù)切線的性質(zhì)得到CAE+∠EAO=∠CAB=90°,等量代換得到DEO=90°,于是得到結(jié)論;

2)根據(jù)射影定理得到AB2=BEBC,求得BE=3,(負值舍去),得到BC=4,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

試題解析:解:(1ABO的直徑,∴∠AEB=90°,∴∠AEC=90°,DAC的中點,AD=DE,∴∠DAE=∠AED,ACO的切線,∴∠CAE+∠EAO=∠CAB=90°,OA=OE,∴∠OAE=∠OEA∴∠DEA+∠OEA=90°,∴∠DEO=90°,DEO的切線;

2OA=AB=,∵∠CAB=90°,AEBC,AB2=BEBC,即(2=BEBE+1),BE=3,(負值舍去),BC=4,sinACB=,∴∠ACB=60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10)已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊△ADE.

(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關(guān)系;

(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.

(1)11日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米?

(2)16日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于A2,1),B1,n)兩點.

1)試確定上述反比例函數(shù)和一次函數(shù)的表達式.

2)求△AOB的面積.

3)比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個菱形繞著它的對角線的交點旋轉(zhuǎn),旋轉(zhuǎn)前后的兩個菱形構(gòu)成一個星形(陰影部分).若菱形的一個內(nèi)角為,邊長為,則該星形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點,與軸的另一個交點為,將拋物線向右平移個單位得到拋物線, 軸于, 兩點(點在點的左邊),交軸于點

)求拋物線的解析式及頂點坐標.

)以為斜邊向上作等腰直角三角形,當(dāng)點落在拋物線的對稱軸上時,求拋物線的解析式.

)若拋物線的對稱軸存在點,使為等邊三角形,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇果超市用5000元購進一批新品種的蘋果進行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進該種蘋果,但這次的進價比試銷時每千克多了0.5元,購進蘋果的數(shù)量是試銷時的2倍。

(1)試銷時該品種蘋果的進價是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價出售,當(dāng)大部分蘋果售出后,余下的400千克按定價的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作MECD于點E,1=2.

(1)若CE=1,求BC的長;

(2)求證:AM=DF+ME.

查看答案和解析>>

同步練習(xí)冊答案