【題目】已知是二次函數(shù),且函數(shù)圖象有最高點.

1)求的值;

2)當(dāng)為何值時,的增大而減少.

【答案】1;(2)當(dāng)時,的增大而減少

【解析】

1)根據(jù)二次函數(shù)的定義得出k2+k-4=2,再利用函數(shù)圖象有最高點,得出k+20,即可得出k的值;

2)利用(1)中k的值得出二次函數(shù)的解析式,利用形如y=ax2a≠0)的二次函數(shù)頂點坐標(biāo)為(0,0),對稱軸是y軸即可得出答案.

1)∵是二次函數(shù),

k2+k-4=2k+2≠0,

解得k=-3k=2

∵函數(shù)有最高點,

∴拋物線的開口向下,

k+20,

解得k-2

k=-3

2)當(dāng)k=-3時,y=-x2頂點坐標(biāo)(00),對稱軸為y軸,

當(dāng)x0時,yx的增大而減少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,BABC,BDAC于點E,點FDB的延長線上,且∠BAF=∠C

1)求證:AF是⊙O的切線;

2)若BC2,BE4,求⊙O半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中, ,點為射線上的動點,連接,將射線繞點順時針旋轉(zhuǎn)角后得到射線,過點的垂線,與射線交于點,點關(guān)于點的對稱點為,連接.

1)當(dāng)為等邊三角形時,

依題意補全圖1;

的長為________

2)如圖2,當(dāng),且時, 求證:

3)設(shè), 當(dāng)時,直接寫出的長. (用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與坐標(biāo)軸交于AB兩點,矩形ABCD的對稱中心為M,雙曲線x>0)正好經(jīng)過CM兩點,則直線AC的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB為直徑,作ODABAC于點D,延長BC,OD交于點F,過點C作⊙O的切線CE,交OF于點E

1)求證:ECED

2)如果OA4,EF3,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形中,,點在斜邊上(),作,且,連接,如圖(1).

1)求證:

2)延長至點,使得交于點.如圖(2).

①求證:;

②求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°,∠A=30°AB=6,點D,E分別是BC,AB上的動點,將BDE沿直線DE翻折,點B的對應(yīng)點B′恰好落在AC上,若AEB′是等腰三角形,那么CB′的值是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進(jìn)行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報名的統(tǒng)計結(jié)果,繪制了如下尚不完整的統(tǒng)計圖:

1 各項報名人數(shù)扇形統(tǒng)計圖:

2 各項報名人數(shù)條形統(tǒng)計圖:

根據(jù)以上信息解答下列問題:

1)學(xué)生報名總?cè)藬?shù)為 人;

2)如圖1項目D所在扇形的圓心角等于

3)請將圖2的條形統(tǒng)計圖補充完整;

4)學(xué)校準(zhǔn)備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書法比賽,求恰好選中甲、乙兩名同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCDAD上一點,E、F分別是PB、PC(靠近點P)的三等分點,△PEF、△PDC、△PAB的面積分別為、,若AD=2,AB=,∠A=60°,則的值為( 。

A. B. C. D. 4

查看答案和解析>>

同步練習(xí)冊答案