【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,作OD⊥AB交AC于點(diǎn)D,延長(zhǎng)BC,OD交于點(diǎn)F,過(guò)點(diǎn)C作⊙O的切線CE,交OF于點(diǎn)E.
(1)求證:EC=ED;
(2)如果OA=4,EF=3,求弦AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)連接OC,由切線的性質(zhì)可證得∠ACE+∠A=90°,又∠CDE+∠A=90°,可得∠CDE=∠ACE,則結(jié)論得證;
(2)先根據(jù)勾股定理求出OE,OD,AD的長(zhǎng),證明Rt△AOD∽Rt△ACB,得出比例線段即可求出AC的長(zhǎng).
(1)證明:連接OC,
∵CE與⊙O相切,OC是⊙O的半徑,
∴OC⊥CE,
∴∠OCA+∠ACE=90°,
∵OA=OC,
∴∠A=∠OCA,
∴∠ACE+∠A=90°,
∵OD⊥AB,
∴∠ODA+∠A=90°,
∵∠ODA=∠CDE,
∴∠CDE+∠A=90°,
∴∠CDE=∠ACE,
∴EC=ED;
(2)∵AB為⊙O的直徑,
∴∠ACB=90°,
在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,
∴∠CDE+∠ECF=90°,
∵∠CDE+∠F=90°,
∴∠ECF=∠F,
∴EC=EF,
∵EF=3,
∴EC=DE=3,
∴OE=5,
∴OD=OE﹣DE=2,
在Rt△OAD中,AD=,
在Rt△AOD和Rt△ACB中,
∵∠A=∠A,∠ACB=∠AOD,
∴Rt△AOD∽Rt△ACB,
∴,即,
∴AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠OAC=4.
(1)求拋物線的解析式:
(2)若點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AD下方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PH⊥AD于點(diǎn)H,作PM平行于y軸交直線AD于點(diǎn)M,交x軸于點(diǎn)E,求△PHM的周長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑的圓交于點(diǎn),交于點(diǎn),以點(diǎn)為頂點(diǎn)作,使得,交延長(zhǎng)線于點(diǎn),連接、,延長(zhǎng)交于點(diǎn).
(1)求證:為的切線;
(2)求證:;
(3)若,且,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式.
(2)求當(dāng)x為何值時(shí),y1>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和-2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、0和2.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).
(1)請(qǐng)用表格或樹狀圖列出點(diǎn)A所有可能的坐標(biāo);
(2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校3月份開展網(wǎng)絡(luò)授課教學(xué),該校隨機(jī)抽取部分學(xué)生,按四個(gè)類別(A、很喜歡;B、喜歡;C、一般;D、不喜歡;)統(tǒng)計(jì)它們對(duì)網(wǎng)絡(luò)授課的接受情況,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)這次共抽取_________名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查;扇形統(tǒng)計(jì)圖中,D類所對(duì)應(yīng)的扇形圓心角的大小為_______;
(2)將條形圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,估計(jì)該校表示“喜歡”網(wǎng)絡(luò)授課的B類的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】上海世博會(huì)已于2010年4月30日開幕,各國(guó)游客都被吸引到了這個(gè)地方,據(jù)統(tǒng)計(jì)到5月10號(hào)為止最高單日接待量已達(dá)到100萬(wàn)人次,其中中國(guó)館自然是最受歡迎的展館,在世博會(huì)開園第一天共接待了游客3萬(wàn)余人,而外國(guó)場(chǎng)館中最受歡迎的依次是瑞士館、法國(guó)館、德國(guó)館、西班牙館、日本館.現(xiàn)將某天世博會(huì)最受歡迎的6個(gè)館的參觀人數(shù)用統(tǒng)計(jì)圖①②分別表示如下:
請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)這一天參觀這6個(gè)場(chǎng)館的總?cè)藬?shù)為 __ ,其中參觀日本館的人數(shù)有__,德國(guó)館所在扇形的圓心角度數(shù)為__;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小寶和小貝都想利用暑假去上海參觀世博會(huì),恰好張伯伯有一張世博會(huì)的門票,小寶和小貝都想得到這張門票.于是他們決定用轉(zhuǎn)轉(zhuǎn)盤的游戲來(lái)決定這張票由誰(shuí)獲得,游戲規(guī)則如下:將一質(zhì)地均勻的轉(zhuǎn)盤等分成5個(gè)面積相等的扇形,上面分別標(biāo)有數(shù)字 -l,4,5,-6,0,小寶和小貝均隨機(jī)地轉(zhuǎn)轉(zhuǎn)盤一次,把指針指向區(qū)域內(nèi)的數(shù)字分別記為x、y.若指針指在邊界,則重新轉(zhuǎn)一次直到指針指向一個(gè)區(qū)域內(nèi)為止,然后他們計(jì)算出xy的值.規(guī)定:當(dāng)xy的值為負(fù)數(shù)時(shí),門票歸小寶;xy的值為正數(shù)時(shí),門票歸小貝.請(qǐng)利用表格或樹狀圖游戲?qū)﹄p方公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝加工廠甲、乙兩個(gè)車間共同加工一款休閑裝,且每人每天加工的件數(shù)相同,甲車間比乙車間少10人,甲車間每天加工服裝400件,乙車間每天加工服裝600件.
(1)求甲、乙兩車間各有多少人;
(2)甲車間更新了設(shè)備,平均每人每天加工的件數(shù)比原來(lái)多了10件,乙車間的加工效率不變,在兩個(gè)車間總?cè)藬?shù)不變的情況下,加工廠計(jì)劃從乙車間調(diào)出一部分人到甲車間,使每天兩個(gè)車間加工的總數(shù)不少于1314件,求至少要從乙車間調(diào)出多少人到甲車間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列4個(gè)結(jié)論:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com