【題目】(在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖1,則有a2+b2=c2;若△ABC為銳角三角形時,小明猜想:a2+b2>c2 , 理由如下:如圖2,過點A作AD⊥CB于點D,設(shè)CD=x.在Rt△ADC中,AD2=b2﹣x2 , 在Rt△ADB中,AD2=c2﹣(a﹣x)2
∴a2+b2=c2+2ax
∵a>0,x>0
∴2ax>0
∴a2+b2>c2
∴當(dāng)△ABC為銳角三角形時,a2+b2>c2
所以小明的猜想是正確的.

(1)請你猜想,當(dāng)△ABC為鈍角三角形時,a2+b2與c2的大小關(guān)系.
(2)溫馨提示:在圖3中,作BC邊上的高.
(3)證明你猜想的結(jié)論是否正確.

【答案】
(1)

解:當(dāng)△ABC為鈍角三角形時,a2+b2與c2的大小關(guān)系為:a2+b2<c2


(2)

解:如圖3,過點A作AD⊥BC于點D


(3)

解:證明:如圖3,設(shè)CD=x.

在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2

∴a2+b2=c2﹣2ax

∵a>0,x>0

∴2ax>0

∴a2+b2<c2

∴當(dāng)△ABC為鈍角三角形時,a2+b2<c2


【解析】(1)根據(jù)題意可猜測:當(dāng)△ABC為鈍角三角形時,a2+b2與c2的大小關(guān)系為:a2+b2<c2;(2)根據(jù)題意可作輔助線:過點A作AD⊥BC于點D;(3)然后設(shè)CD=x,分別在Rt△ADC與Rt△ADB中,表示出AD2 , 即可證得結(jié)論.此題屬于三角形的綜合題.考查了勾股定理以及三角形的面積問題.注意理解題意是解此題的關(guān)鍵.
【考點精析】解答此題的關(guān)鍵在于理解三角形三邊關(guān)系的相關(guān)知識,掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P,Q分別是邊長為4 cm的等邊三角形ABCAB,BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1 cm/s,連接AQ,CP,相交于點M.下面四個結(jié)論正確的有________(填序號).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度數(shù)不變,始終等于60;④當(dāng)?shù)?/span>ss時,△PBQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等組 的關(guān)聯(lián)方程是________

(2)若不等式組 的一個關(guān)聯(lián)方程的根是整數(shù), 則這個關(guān)聯(lián)方程可以是________(寫出一個即可)

(3)若方程 3-x=2x,3+x= 都是關(guān)于 x 的不等式組 的關(guān)聯(lián)方程,直接寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(-1,5),B(-1,0),C(-4,3).

Ⅰ)求△ABC的面積;

Ⅱ)在圖中作出△ABC關(guān)于軸的對稱圖形△A1B1C1,并寫出點A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點A、B、C在同一直線上,AB=2,BC=1,分別以AB、BC為邊,在AC同側(cè)作等邊ABD和等邊BCE,分別聯(lián)結(jié)AE、CD.

(1)找出圖中的全等三角形(不添加輔助線),并證明你的結(jié)論.

(2)線段AE與線段CD的關(guān)系是:AE CD(填>、=、<).AECD的夾角是: .

(3) ABD固定不動,使BCE繞著點B旋轉(zhuǎn),①這時(2)得出的結(jié)論還成立嗎(不要求證明)?

②在旋轉(zhuǎn)過程中,線段DC的長是變化的,它的變化范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的圖象與x軸交于A(﹣1.0),B(3,0)兩點,與y軸交于點C(0,﹣3),頂點為D.

(1)求此拋物線的解析式.
(2)求此拋物線頂點D的坐標(biāo)和對稱軸.
(3)探究對稱軸上是否存在一點P,使得以點P、D、A為頂點的三角形是等腰三角形?若存在,請求出所有符合條件的P點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中:

①∠ABC=ADC;

AC與BD相互平分;

AC,BD分別平分四邊形ABCD的兩組對角;

四邊形ABCD的面積S=ACBD.

正確的是 (填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量AB=3m,BC=12m,CD=13mDA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

同步練習(xí)冊答案