【題目】如圖,在矩形ABCD中,AB=6,AD=8,點(diǎn)PBC中點(diǎn),點(diǎn)E、F是邊CD上的任意兩點(diǎn),且EF=2,當(dāng)四邊形APEF的周長(zhǎng)最小時(shí),則DF的長(zhǎng)為(  )

A. 2 B. 4 C. D.

【答案】C

【解析】

如圖,P關(guān)于CD的對(duì)稱點(diǎn)MAB上截取AH=2,然后連接HMCDE接著在CD上截取EF=2,那么E、F兩點(diǎn)即可滿足題目要求,利用相似三角形的性質(zhì)即可求出CE的長(zhǎng)進(jìn)一步得到DF的長(zhǎng).

如圖,P關(guān)于CD的對(duì)稱點(diǎn)MAB上截取AH=2,然后連接HMCDE接著在CD上截取EF=2,那么E、F兩點(diǎn)即可滿足使四邊形APEF的周長(zhǎng)最小.

∵在矩形ABCD,AB=6,BC=8,點(diǎn)PBC中點(diǎn)CP=CM=4,MB=12AH=2,BH=4

ABCD,∴△CEM∽△BHMCEBH=MCMB,CE==DF=CDCEEF=62=

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm,如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為每秒2cm1cm,F(xiàn)Q⊥BC,分別交AC、BC于點(diǎn)PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<4).

(1)連接EF,若運(yùn)動(dòng)時(shí)間t=   時(shí),EF⊥AC;

(2)連接EP,當(dāng)△EPC的面積為3cm2時(shí),求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCEl1l2相交于點(diǎn)O.△ADE的周長(zhǎng)為6cm

1)求BC的長(zhǎng);

2)分別連結(jié)OAOB、OC,若△OBC的周長(zhǎng)為16cm,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)O是等邊ABC內(nèi)的任一點(diǎn),連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得ADC.

DAO的度數(shù)是 ;

②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;

(2)設(shè)AOB=α,BOC=β.

①當(dāng)α,β滿足什么關(guān)系時(shí),OA+OB+OC有最小值?請(qǐng)?jiān)趫D2中畫出符合條件的圖形,并說(shuō)明理由;

②若等邊ABC的邊長(zhǎng)為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點(diǎn)P 從點(diǎn)A 出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm 的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′.設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間 t 秒,若四邊形QPCP′為菱形,則 t 的值為(

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)DAB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD的中點(diǎn),連接CD,CA

1)求證:ABD=2BDC

2)過(guò)點(diǎn)CCHABH,交ADE,求證:EA=EC;

3)在(2)的條件下,若OH=5,AD=24,求線段DE的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)EBC邊上.AE=AB,將線段AC繞點(diǎn)A旋轉(zhuǎn)到AF的位置.使得∠CAF=BAE.連接EF,EFAC交于點(diǎn)G

(1)求證:EF =BC;

(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,且直線CD經(jīng)過(guò)∠BCA的內(nèi)部,點(diǎn)EF在射線CD上,已知CA=CB且∠BEC=CFA=α

1)如圖1,若∠BCA=80°,∠α=90°,問(wèn)EF=BE-AF,成立嗎?說(shuō)明理由.

2)將(1)中的已知條件改成∠BCA=β,∠α+β=180°(如圖2),問(wèn)EF=BE-AF仍成立嗎?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案