【題目】如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P,A,C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:設(shè)拋物線的解析式為y=ax2+bx+c
由拋物線與y軸交于點(diǎn)C(0,3),可知c=3.即拋物線的解析式為y=ax2+bx+3.
把點(diǎn)A(1,0)、點(diǎn)B(﹣3,0)代入,得 解得a=﹣1,b=﹣2
∴拋物線的解析式為y=﹣x2﹣2x+3.
∵y=﹣x2﹣2x+3=﹣(x+1)2+4
∴頂點(diǎn)D的坐標(biāo)為(﹣1,4)
(2)
解:△BCD是直角三角形.
理由如下:解法一:過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F.
∵在Rt△BOC中,OB=3,OC=3,
∴BC2=OB2+OC2=18
在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,
∴CD2=DF2+CF2=2
在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,
∴BD2=DE2+BE2=20
∴BC2+CD2=BD2
∴△BCD為直角三角形.
解法二:過點(diǎn)D作DF⊥y軸于點(diǎn)F.
在Rt△BOC中,∵OB=3,OC=3
∴OB=OC∴∠OCB=45°
∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1
∴DF=CF
∴∠DCF=45°
∴∠BCD=180°﹣∠DCF﹣∠OCB=90°
∴△BCD為直角三角形
(3)
解:①△BCD的三邊, = = ,又 = ,故當(dāng)P是原點(diǎn)O時(shí),△ACP∽△DBC;
②當(dāng)AC是直角邊時(shí),若AC與CD是對應(yīng)邊,設(shè)P的坐標(biāo)是(0,a),則PC=3﹣a, = ,即 = ,解得:a=﹣9,則P的坐標(biāo)是(0,﹣9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;
③當(dāng)AC是直角邊,若AC與BC是對應(yīng)邊時(shí),設(shè)P的坐標(biāo)是(0,b),則PC=3﹣b,則 = ,即 = ,解得:b=﹣ ,故P是(0,﹣ )時(shí),則△ACP∽△CBD一定成立;
④當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(d,0).
則AP=1﹣d,當(dāng)AC與CD是對應(yīng)邊時(shí), = ,即 = ,解得:d=1﹣3 ,此時(shí),兩個(gè)三角形不相似;
⑤當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(e,0).
則AP=1﹣e,當(dāng)AC與DC是對應(yīng)邊時(shí), = ,即 = ,解得:e=﹣9,符合條件.
總之,符合條件的點(diǎn)P的坐標(biāo)為: .
【解析】(1)利用待定系數(shù)法即可求得函數(shù)的解析式;(2)利用勾股定理求得△BCD的三邊的長,然后根據(jù)勾股定理的逆定理即可作出判斷;(3)分p在x軸和y軸兩種情況討論,舍出P的坐標(biāo),根據(jù)相似三角形的對應(yīng)邊的比相等即可求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為 的中點(diǎn),連接OD交弦AC于點(diǎn)F,過點(diǎn)D作DE∥AC,交BA的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知λ∈R,函數(shù)f(x)=ex﹣ex﹣λ(xlnx﹣x+1)的導(dǎo)數(shù)為g(x).
(1)求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)g(x)存在極值,求λ的取值范圍;
(3)若x≥1時(shí),f(x)≥0恒成立,求λ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會,該籌委會動員居民自愿集資建立一個(gè)書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.
(1)籌委會計(jì)劃,購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?
(2)經(jīng)初步統(tǒng)計(jì),有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈送了一批閱覽室設(shè)施和書籍,這樣,只需參與戶共集資20000元.經(jīng)籌委會進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中a>0).則每戶平均集資的資金在150元的基礎(chǔ)上減少了 a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= ,當(dāng)x>0時(shí),y隨x的增大而增大,則關(guān)于x的方程ax2﹣2x+b=0的根的情況是( )
A.有兩個(gè)正根
B.有兩個(gè)負(fù)根
C.有一個(gè)正根一個(gè)負(fù)根
D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖某超市舉行“翻牌”抽獎活動,在一張木板上共有6個(gè)相同的牌,其分別對應(yīng)價(jià)值為2元、5元、8元、10元、20元和50元的獎品.
(1)小雷在該抽獎活動中隨機(jī)翻一張牌,求抽中10元獎品的概率;
(2)如果隨機(jī)翻兩張牌,且第一次翻過的牌不再參加下次翻牌,求兩次抽中的獎品的總價(jià)值大于14元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線C1、C2關(guān)于x軸對稱,拋物線C1 , C3關(guān)于y軸對稱,如果拋物線C2的解析式是y=﹣ (x﹣2)2+2,那么拋物線C3的解析式是( )
A.y=﹣ (x﹣2)2﹣2
B.y=﹣ (x+2)2+2??
C.y= (x﹣2)2﹣2
D.y= (x+2)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y= 的圖象相交于點(diǎn)A(﹣2,a),并且與x軸相交于點(diǎn)B.
(1)求a的值;
(2)求反比例函數(shù)的表達(dá)式;
(3)求△AOB的面積;
(4)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片ABC中,AB=8,BC=4,AC=6,按下列方法沿虛線剪下,能使陰影部分的三角形與△ABC相似的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com