【題目】用指定的方法解方程

14x2x+1=32x+1)(因式分解法

2)(x+3)(x﹣1=5公式法

32x2﹣3x+1=0配方法

【答案】(1)x1=,x2=﹣;(2)x1=2,x2=﹣4;(3)x1=1,x2=

【解析】試題分析:(1)根據(jù)因式分解法解答即可;

2)根據(jù)公式法解答即可;

3)根據(jù)配方法解答即可

試題解析:(14x2x+1=32x+1),4x2x+132x+1=0,(4x3)(2x+1=04x3=02x+1=0,解得x1=,x2=

2)(x+3)(x1=5,x2+2x8=0a=1b=2,c=8,∴△=b24ac=224×1×8=360x= =,x1=2x2=4;

32x23x+1=0,2x23x=1, , ,,解得x1=1,x2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫字時一項主要基本功,也是素質(zhì)教育的重要部分,為了了解我校學(xué)生的書寫情況,隨機對部分學(xué)生進(jìn)行測試,測試結(jié)果分為四個等級:優(yōu)秀、良好、合格、不合格;根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,回答以下問題:
(1)扇形統(tǒng)計圖中,“合格”的百分比為
(2)本次抽測不合格等級學(xué)生有人;
(3)隨機抽取了5名等級為“優(yōu)秀”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,求剛好抽到同性別學(xué)生的概率;
(4)若該校共有2000名學(xué)生,估計該校書寫“不合格”等級學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )
A.一個游戲中獎的概率是 ,則做100次這樣的游戲一定會中獎
B.為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式
C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D.若甲組數(shù)據(jù)的方差S2=0.2,乙組數(shù)據(jù)的方差S2=0.5,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O交AC于點E,連結(jié)DE并延長,與BC的延長線交于點F.且BD=BF.
(1)求證:AC與⊙O相切.
(2)若BC=6,AB=12,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y= 在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是(
A.3
B.4
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在抗震救災(zāi)期間承擔(dān)40 000頂救災(zāi)帳篷的生產(chǎn)任務(wù),分為A、B、C、D四種型號,它們的數(shù)量百分比和每天單獨生產(chǎn)各種型號帳篷的數(shù)量如圖所示:

根據(jù)以上信息,下列判斷錯誤的是(

A. 其中的D型帳篷占帳篷總數(shù)的10%

B. 單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)C型帳篷天數(shù)的3

C. 單獨生產(chǎn)A型帳篷與單獨生產(chǎn)D型帳篷的天數(shù)相等

D. 單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)A型帳篷天數(shù)的2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市某月1日至10日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇71日至78日中的某一天到達(dá)該市,并連續(xù)停留3天.則此人在該市停留期間有且僅有1天空氣質(zhì)量重度污染的概率是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,直線EF分別交兩直角邊AB、BC與E、F兩點,且EF∥AC,P是斜邊AC的中點,連接PE,PF,且AB= ,BC=

(1)當(dāng)E、F均為兩直角邊的中點時,求證:四邊形EPFB是矩形,并求出此時EF的長;
(2)設(shè)EF的長度為x(x>0),當(dāng)∠EPF=∠A時,用含x的代數(shù)式表示EP的長;
(3)設(shè)△PEF的面積為S,則當(dāng)EF為多少時,S有最大值,并求出該最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行.某自行車廠生產(chǎn)的某型號自行車去年銷售總額為8萬元.今年該型號自行車每輛售價預(yù)計比去年降低200元.若該型號車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求該型號自行車去年每輛售價多少元?

查看答案和解析>>

同步練習(xí)冊答案