【題目】閱讀下列材料,并完成相應(yīng)的任務(wù):求根分解法是多項(xiàng)式因式分解的一種方法,是用求多項(xiàng)式對(duì)應(yīng)的方程的根分離出多項(xiàng)式的一次因式.

設(shè)fx)是一元多項(xiàng)式,若方程fx)=0有一個(gè)根為xa,則多項(xiàng)式必有一個(gè)一次因式xa,于是fx)=(xagx).

例如,設(shè)多項(xiàng)式7x2x6fx),則有fx)=7x2x6,令7x2x60,容易看出,此方程有一根為x1,則fx)必有一個(gè)一次因式x1,那么得到7x2x6=(x1)(mx+n)(m、n為常數(shù))而(x1)(mx+n)=mx2+nmxn,所以7x2x6mx2+nmxn,由系數(shù)對(duì)應(yīng)相等可得m7,n6,所以7x2x6=(x1)(7x+6).

任務(wù):(1)方程x33x2+40的一根為   

2)請(qǐng)你根據(jù)上面的材料因式分解多項(xiàng)式:x33x2+4   

【答案】1x=﹣1;(2)(x+1)(x22

【解析】

1)將進(jìn)行因式分解,再代入方程中,即可求方程的解;(2)將進(jìn)行因式分解成(x+1,再將(x+1運(yùn)用多項(xiàng)式乘多項(xiàng)式進(jìn)行展開(kāi),根據(jù)等式兩邊對(duì)應(yīng)項(xiàng)的系數(shù)相等,可以求得m的值;

解:

1x33x2+40,

x+1)(x220,

所以x=﹣1,

故答案為﹣1

2x33x2+4=(x+1)(xm2

=(x+1)(x22mx+m2

x32mx2+m2x+x22mx+m2

x3+(﹣2m+1x2+m22mx+m2,

所以﹣2m+1=﹣3,解得m2,

所以因式分解多項(xiàng)式:x33x2+4=(x+1)(x﹣2)2,

故答案為(x+1)(x﹣2)2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+c(0<2a<b)的頂點(diǎn)為P(x0,y0),點(diǎn)A(1,yA),B(0,yB),C(﹣1,yC)在該拋物線(xiàn)上,當(dāng)y0≥0恒成立時(shí),的最小值為( 。

A. 1 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DBC的中點(diǎn),DEAB,DFAC,垂足分別為點(diǎn)E、F,BE=CF.

(1)求證:ABC是等腰三角形.

(2)判斷點(diǎn)D是否在∠BAC的角平分線(xiàn)上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為米,跑道分直道和彎道,直道為長(zhǎng)相等的平行線(xiàn)段,彎道為同心的半圓型,彎道與直道相連接,已知直道的長(zhǎng)米,跑道的寬為米.,結(jié)果精確到

求第一條跑道的彎道部分的半徑.

求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?

若進(jìn)行米比賽,求第六道的起點(diǎn)與圓心的連線(xiàn)的夾角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的菱形ABCD中,DAB=60°,連接對(duì)角線(xiàn)AC,以AC為邊作第二個(gè)菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個(gè)菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個(gè)菱形的邊長(zhǎng)為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,A′BCABC關(guān)于BC所在直線(xiàn)對(duì)稱(chēng),點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長(zhǎng)交A′B所在直線(xiàn)于點(diǎn)F,連接A′E.當(dāng)A′EF為直角三角形時(shí),AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿AC對(duì)折,使AABC落在04EC的位置,且CEAD相交于點(diǎn)F.

(1)求證:EF=DF;

(2)AB=,BC=3,求折疊后的重疊部分(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),將△ACD沿CD所在的直線(xiàn)折疊至△CDA的位置,CA'AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自實(shí)施新教育改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分同學(xué)進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類(lèi):A.特別好;B.好;C.一般;D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查中,張老師一共調(diào)查了多少名同學(xué)?

(2)求出調(diào)查中C類(lèi)女生及D類(lèi)男生的人數(shù),將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案