【題目】如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60°.
【答案】證明:∵BM=CN,BC=AC,∴CM=AN, 又∵AB=AC,∠BAN=∠ACM,
∴△AMC≌△BNA,則∠BNA=∠AMC,
∵∠MAN+∠ANB+∠AQN=180°
∠MAN+∠AMC+∠ACB=180°,
∴∠AQN=∠ACB,
∵∠BQM=∠AQN,
∴∠BQM=∠AQN=∠ACB=60°
【解析】根據(jù)BM=CN可得CM=AN,易證△AMC≌△BNA,得∠BNA=∠AMC,根據(jù)內(nèi)角和為180°即可求得∠BQM=∠ACB=60°,即可解題.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等邊三角形的性質(zhì),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,AB=AC,AB 的垂直平分線交 AB 于點(diǎn) D,交 CA 的延長(zhǎng)線于點(diǎn) E,∠EBC=42°,則 ∠BAC=( )
A. 159° B. 154° C. 152° D. 138°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,禁止捕魚(yú)期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚(yú)船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚(yú)船,求巡邏船從出發(fā)到成功攔截捕魚(yú)船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. ﹣ ??
B. ﹣ ??
C.π﹣ ??
D.π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)P是直線BC上一點(diǎn),連接PA,將線段PA繞 點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點(diǎn)F,使BF=BP,且點(diǎn)F與點(diǎn)E在BC同側(cè),連接EF、CF.
(1)如圖①,當(dāng)點(diǎn)P在CB延長(zhǎng)線上時(shí),求證:四邊形PCFE是平行四邊形.
(2)如圖②,當(dāng)點(diǎn)P在線段BC上時(shí),四邊形PCFE是否還是平行四邊形,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于P、G兩點(diǎn),過(guò)點(diǎn)P作PA⊥x軸,一次函數(shù)圖象分別交x軸、y軸于C、D兩點(diǎn), = ,且S△ADP=6.
(1)求點(diǎn)D坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(3)根據(jù)圖象直接寫(xiě)出一次函數(shù)值小于反比例函數(shù)值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在平面直角坐標(biāo)系xOy中,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個(gè)單位長(zhǎng)度,再向左平移 個(gè)單位長(zhǎng)度得到三角形 ,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為 ,,.
(1)寫(xiě)出點(diǎn) ,, 的坐標(biāo);
(2)在圖中畫(huà)出平移后的三角形 ;
(3)三角形 的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位運(yùn)動(dòng)員在一段2000米長(zhǎng)的筆直公路上進(jìn)行跑步比賽,比賽開(kāi)始時(shí)甲在起點(diǎn),乙在甲的前面200米,他們同時(shí)同向出發(fā)勻速前進(jìn),甲的速度是8米/秒,乙的速度是6米/秒,先到終點(diǎn)者在終點(diǎn)原地等待.設(shè)甲、乙兩人之間的距離是y米,比賽時(shí)間是x秒,當(dāng)兩人都到達(dá)終點(diǎn)計(jì)時(shí)結(jié)束,整個(gè)過(guò)程中y與之間的函數(shù)圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com