精英家教網 > 初中數學 > 題目詳情

【題目】甲、乙兩位運動員在一段2000米長的筆直公路上進行跑步比賽,比賽開始時甲在起點,乙在甲的前面200米,他們同時同向出發(fā)勻速前進,甲的速度是8米/秒,乙的速度是6米/秒,先到終點者在終點原地等待.設甲、乙兩人之間的距離是y米,比賽時間是x秒,當兩人都到達終點計時結束,整個過程中y與之間的函數圖象是(

A. B.

C. D.

【答案】B

【解析】

試題分析:當甲跑到終點時所用的時間為:2000÷8=250(秒),

此時甲乙間的距離為:2000﹣200﹣6×250=300(米),

乙到達終點時所用的時間為:÷6=300(秒),

最高點坐標為.

設y關于x的函數解析式為y=kx+b,

當0x100時,有,解得:

此時y=﹣2x+200;

當100x250時,有,解得:,

此時y=2x﹣200;

當250x300時,有,解得:,

此時y=﹣6x+1800.

y關于x的函數解析式為

整個過程中y與之間的函數圖象是B.

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度數;

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD繞點C順時針旋轉90°得到矩形FGCE,點M、N分別是BD、GE的中點,若BC=14CE=2,則MN的長( 。

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y1=kx+b(k≠0)和反比例函數y2= (m≠0)的圖象交于點A(﹣1,6),B(a,﹣2).
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某城市市民廣場一入口處有五級高度相等的小臺階.已知臺階總高1.5米,為了安全,現要做一個不銹鋼扶手AB及兩根與FG垂直且長為1米的不銹鋼架桿AD和BC(桿子的底端分別為D、C),且∠DAB=66.5°.(參考數據:cos66.5°≈0.40,sin66.5°≈0.92)
(1)求點D與點C的高度差DH;
(2)求所有不銹鋼材料的總長度(即AD+AB+BC的長,結果精確到0.1米)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

五個邊長為的小正方形如圖①放置,要求用兩條線段將它們分割成三部分后把它們拼接成一個新的正方形.

小辰是這樣思考的:圖①中五個邊長為的小正方形的面積的和為,拼接后的正方形的面積也應該是,故而拼接后的正方形的邊長為,因此想到了依據勾股定理,構造長為的線段,即:,因此想到了兩直角邊分別為的直角三角形的斜邊正好是,如圖②,進而拼接成了一個便長為的正方形.

參考上面的材料和小辰的思考方法,解決問題:

)五個邊長為的小正方形如圖④放置,類似圖③,在圖④中畫出分割線和拼接后的正方形(只要畫出一種即可).

)十個邊長為的小正方形如圖⑤放置,類似圖③,在圖⑤中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).

)五個邊長為的小正方形如圖⑥放置,類似圖③,在圖⑥中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數y=﹣ax+b的圖象與反比例函數y= 的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求反比例函數和一次函數的表達式;
(2)求點C的坐標及△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數圖象上,當0<x1<x2時,y1<y2 , 其中正確的是(
A.①②④
B.①③
C.①②③
D.①③④

查看答案和解析>>

同步練習冊答案