【題目】如圖,在△ABC中,已知AB=AC=10cmBC=16cm,AD⊥BC于D,點E、F分別從B、C兩點同時出發(fā),其中點E沿BC向終點C運動,速度為4cm/s;點F沿CAAB向終點B運動,速度為5cm/s,設(shè)它們運動的時間為xs).

1)求x為何值時,△EFC和△ACD相似;

(2)是否存在某一時刻,使得△EFD被 AD分得的兩部分面積之比為3:5,若存在,求出x的值,若不存在,請說明理由;

(3)若以EF為直徑的圓與線段AC只有一個公共點,求出相應(yīng)x的取值范圍.

【答案】1

(2)不存在.

3

【解析】分析:(1)點FAC上,點EBD上時,①當(dāng)時,CFE∽△CDA,②當(dāng)時,分別列出方程求解即可;

2)不存在.分兩種情形說明:如圖2中,當(dāng)點FAC上,點EBD上時,作FHBCH,EFADN.只要證明EN=FN即可解決問題;

3)分四種情形①如圖3中,當(dāng)以EF為直徑的⊙O經(jīng)過點A時,⊙O與線段AC有兩個交點,連接AE,則∠EAF=90°②如圖4中,當(dāng)⊙OAC相切時,滿足條件,此時t=③如圖5中,當(dāng)⊙OAB相切時,④如圖6中,⊙O經(jīng)過點A時,連接AE,則∠EAF=90°.分別求解即可.

詳解:(1)如圖1中,

FAC上,點EBD上時,①當(dāng)時,CFE∽△CDA

=,

t=

②當(dāng)時,即=,

t=2,

當(dāng)點FAB上,點ECD上時,不存在EFCACD相似,

綜上所述,t=s2s時,EFCACD相似.

2)不存在.

理由:如圖2中,當(dāng)點FAC上,點EBD上時,作FHBCH,EFADN

CF=5tBE=4t

CH=CFcosC=4t,

BE=CH

AB=AC,ADBC,

BD=DC

DE=DH,

DNFH,

=1

EN=FN,

∴SEND=SFND

∴△EFD AD分得的兩部分面積相等,

同法可證當(dāng)點FAB上,點ECD上時,EFD AD分得的兩部分面積相等,

∴不存在某一時刻,使得EFD AD分得的兩部分面積之比為35

3①如圖3中,當(dāng)以EF為直徑的⊙O經(jīng)過點A時,⊙O與線段AC有兩個交點,連接AE,則∠EAF=90°

=cosC=,可得=,

t=,

0≤t時,⊙O與線段AC只有一個交點.

②如圖4中,當(dāng)⊙OAC相切時,滿足條件,此時t=

③如圖5中,當(dāng)⊙OAB相切時,cosB=,即=,解得t=

④如圖6中,⊙O經(jīng)過點A時,連接AE,則∠EAF=90°

cosB==,即=,t=,

t≤4時,⊙O與線段AC只有一個交點.

綜上所述,當(dāng)⊙O與線段AC只有一個交點時,0≤tt≤4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=-x+3,下列說法錯誤的是( 。

A.圖象經(jīng)過點(2,2B.y隨著x的增大而減小

C.圖象與y軸的交點是(6,0D.圖象與坐標(biāo)軸圍成的三角形面積是9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)陣是由50個偶數(shù)排成的.

1)在數(shù)陣中任意做一類似于圖中的框,設(shè)其中最小的數(shù)為x,那么其他3個數(shù)怎樣表示?

2)如果這四個數(shù)的和是172,能否求出這四個數(shù)?

3)如果擴(kuò)充數(shù)陣的數(shù)據(jù),框中的四個數(shù)的和可以是2019嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長相同的小正方形組成的網(wǎng)格,A、B、P、Q四點均在正方形網(wǎng)格的格點上,線段AB、PQ相交于點M,則線段AM的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點分別在平行四邊形各邊上,且AE=CG,BF=DH, 四邊形的周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長為4的正方形,平行于對角線BD的直線lO出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動到直線l與正方形沒有交點為止.設(shè)直線l掃過正方形OBCD的面積為S,直線l運動的時間為t(),下列能反映St之間函數(shù)關(guān)系的圖象是( )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-1,03,P為數(shù)軸上任意一點其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點M、N的距離相等,那么x的值是 ;

3數(shù)軸上是否存在點P,使點P到點MN的距離之和是8?若存在直接寫出x的值;若不存在,請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、N的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的美麗紹興鄉(xiāng)土風(fēng)情知識大賽預(yù)賽各參賽選手的成績?nèi)缦拢?/span>

八(1)班:88,9192,9393,93,94,9898,100;

八(2)班:89,93,93,93,95,9696,98,9899

通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

八(1)班

100

m

93

93

12

八(2)班

99

95

n

93

8.4

1)求表中mn的值;

2)依據(jù)數(shù)據(jù)分析表,有同學(xué)說:最高分在(1)班,(1)班的成績比(2)班好,但也有同學(xué)說(2)班的成績更好請您寫出兩條支持八(2)班成績好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”其中的“籌”原意是指《孫子算經(jīng)》中記載的“算籌”.算籌是古代用來進(jìn)行計算的工具,它是將幾寸長的小竹棍擺在平面上進(jìn)行運算,算籌的擺放形式有縱橫兩種形式(如圖)

當(dāng)表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間:個位、百位、萬位數(shù)用縱式表示;十位,千位,十萬位數(shù)用橫式表示;“0”用空位來代替,以此類推.例如3306用算籌表示就是,則2022用算籌可表示為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案