【題目】如圖,在矩形中,,點分別在平行四邊形各邊上,且AE=CG,BF=DH, 四邊形的周長的最小值為______.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=-2x+6與x軸交于點A,與直線y=x交于點B.
(1)點A坐標為_____________.
(2)動點M從原點O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點A勻速運動,過點M作MP⊥x軸交直線y=x于點P,然后以MP為直角邊向右作等腰直角△MPN.設運動t秒時,ΔMPN與ΔOAB重疊部分的面積為S.求S與t之間的函數關系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,△ABC中,∠ACB=90°,AC=BC,MN是過點A的直線,DB⊥MN于點D,聯結CD.求證:BD+AD= CD.
小明的思考過程如下:要證BD+AD=CD,需要將BD,AD轉化到同一條直線上,可以在MN上截取AE=BD,并聯結EC,可證△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結論得證。
小聰的思考過程如下:要證BD+AD=CD,需要構造以CD為腰的等腰直角三角形,可以過點C作CE⊥CD交MN于點E,可證△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結論得證。
請你參考小明或小聰的思考過程解決下面的問題:
(1)將圖1中的直線MN繞點A旋轉到圖2和圖3的兩種位置時,其它條件不變,猜想BD,AD,CD之間的數量關系,并選擇其中一個圖形加以證明;
(2)在直線MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,CD=___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A、B分別在x軸、y軸上,點A與點C關于y軸對稱,點E是線段AC上的點(點E不與點A、C重合)
(1)若點A的坐標為(a,0),則點C的坐標為 ;
(2)如圖1,點F是線段AB上的點,若∠BEF=∠BAO,∠BAO=2∠OBE,求證:AF=CE;
(3)如圖2,若點D為AC上一點,連接ED,滿足BE=BD,試探究∠ABE與∠DEC的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,點E、F分別從B、C兩點同時出發(fā),其中點E沿BC向終點C運動,速度為4cm/s;點F沿CA、AB向終點B運動,速度為5cm/s,設它們運動的時間為x(s).
(1)求x為何值時,△EFC和△ACD相似;
(2)是否存在某一時刻,使得△EFD被 AD分得的兩部分面積之比為3:5,若存在,求出x的值,若不存在,請說明理由;
(3)若以EF為直徑的圓與線段AC只有一個公共點,求出相應x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左平移,當⊙P與該直線相切時,點P坐標為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關系,并說明理由.
(2)當∠EAC=60o時,求∠BAD的大小.
(3)探究∠EAC與∠BAD的數量關系,請直接寫出結果,不要求說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是由7個同樣大小棱長為1的小正方體搭成的幾何體,請分別畫出它的主視圖、左視圖和俯視圖.
(2)這個組合幾何體的表面積為 個平方單位(包括底面積);
(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則搭這樣的幾何體最多要________個小立方體.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com