【題目】如圖,分別以RtABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACEFAB的中點(diǎn),DE,AB相交于點(diǎn)G.連接EF,若∠BAC30°,下列結(jié)論:EFAC;四邊形ADFE為菱形;AD4AG;DBF≌△EFA.則正確結(jié)論的序號(hào)是(  )

A.①③B.②④C.①③④D.②③④

【答案】C

【解析】

根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半,可得FAFC,根據(jù)等邊三角形的性質(zhì)可得EAEC,根據(jù)線(xiàn)段垂直平分線(xiàn)的判定可得EF是線(xiàn)段AC的垂直平分線(xiàn);根據(jù)條件及等邊三角形的性質(zhì)可得∠DFA=∠EAF90°,DAAC,從而得到DFAE,DAEF,可得到四邊形ADFE為平行四邊形而不是菱形;根據(jù)平行四邊形的對(duì)角線(xiàn)互相平分可得ADAB2AF4AG;易證DBDAEF,∠DBF=∠EFA60°BFFA,即可得到DBF≌△EFA

連接FC,如圖所示:

∵∠ACB90°,FAB的中點(diǎn),

FAFBFC,

∵△ACE是等邊三角形,

EAEC,

FAFCEAEC,

∴點(diǎn)F、點(diǎn)E都在線(xiàn)段AC的垂直平分線(xiàn)上,

EF垂直平分AC,即EFAC;

∵△ABDACE都是等邊三角形,FAB的中點(diǎn),

DFAB即∠DFA90°,BDDAAB2AF,∠DBA=∠DAB=∠EAC=∠ACE60°

∵∠BAC30°

∴∠DAC=∠EAF90°,

∴∠DFA=∠EAF90°,DAAC,

DFAEDAEF,

∴四邊形ADFE為平行四邊形而不是菱形;

∵四邊形ADFE為平行四邊形,

DAEF,AF2AG

BDDAEF,DAAB2AF4AG

DBFEFA中, ,

∴△DBF≌△EFASAS);

綜上所述:①③④正確,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以四邊形ABCD的邊AB、BCCD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、FG、H,順次連接這四個(gè)點(diǎn),得四邊形EFGH

1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請(qǐng)判斷:四邊形EFGH的形狀(不要求證明);

2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=αα90°),

試用含α的代數(shù)式表示∠HAE;

求證:HE=HG;

四邊形EFGH是什么四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線(xiàn)段BM、CM的中點(diǎn).

1)求證:ABM≌△DCM

2)填空:當(dāng)ABAD=      時(shí),四邊形MENF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B都在反比例函數(shù)y=x0)的圖像上,過(guò)點(diǎn)BBCx軸交y軸于點(diǎn)C,連接AC并延長(zhǎng)交x軸于點(diǎn)D,連接BD,DA3DC,SABD6.則k的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形 ABCD 中,AB4,點(diǎn) E為邊AD上一動(dòng)點(diǎn),連接 CE,以 CE為邊,作正方形CEFG(點(diǎn)D、FCE所在直線(xiàn)的同側(cè)),HCD中點(diǎn),連接 FH

1)如圖 1,連接BEBH,若四邊形 BEFH 為平行四邊形,求四邊形 BEFH 的周長(zhǎng);

2)如圖 2,連接 EH,若 AE1,求EHF 的面積;

3)直接寫(xiě)出點(diǎn)E在運(yùn)動(dòng)過(guò)程中,HF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)MO,N對(duì)應(yīng)的數(shù)分別為-30,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x

(1)如果點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等,那么x的值是______;

(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M,點(diǎn)N的距離之和是5?若存在,請(qǐng)直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.

(3)如果點(diǎn)P以每分鐘3個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)M和點(diǎn)N分別以每分鐘1個(gè)單位長(zhǎng)度和每分鐘4個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么幾分鐘時(shí)點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n是實(shí)數(shù),定義運(yùn)算“*”為:m*nmn+n

1)分別求4*(﹣2)與4*的值;

2)若關(guān)于x的方程x*a*x)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開(kāi)展“書(shū)法、武術(shù)、黃梅戲進(jìn)校園”活動(dòng)。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績(jī)?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題.

(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);

(2)求扇形統(tǒng)計(jì)圖B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù);

(3)已知A等級(jí)的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好選1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)快、慢兩車(chē)分別從相距360千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,快車(chē)到達(dá)乙地后,停留1小時(shí),然后按原路原速返回,快車(chē)比慢車(chē)晚1小時(shí)到達(dá)甲地,快、慢兩車(chē)距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時(shí)間x(小時(shí))的關(guān)系如圖.

請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:

1)慢車(chē)的速度是   千米/小時(shí),快車(chē)的速度是   千米/小時(shí);

2)求m的值,并指出點(diǎn)C的實(shí)際意義是什么?

3)在快車(chē)按原路原速返回的過(guò)程中,快、慢兩車(chē)相距的路程為150千米時(shí),慢車(chē)行駛了多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案