【題目】如圖(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,點(diǎn)C在AE上,△ABC繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)后能夠與△ADE重合,再將圖(1)作為“基本圖形”繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)得到圖(2).兩次旋轉(zhuǎn)的角度分別為( )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
【答案】A
【解析】
圖1中可知旋轉(zhuǎn)角是∠EAB,再結(jié)合等腰直角三角形的性質(zhì),易求∠EAB;圖2中是把圖1作為基本圖形,那么旋轉(zhuǎn)角就是∠FAB,結(jié)合等腰直角三角形的性質(zhì)易求∠FAB.
根據(jù)圖1可知,
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°可到△ADE;
如圖,
∵△ABC和△ADE是等腰直角三角形,
∴∠DAE=∠CAB=45°,
∴∠FAB=∠DAE+∠CAB=90°,
即圖1可以逆時(shí)針連續(xù)旋轉(zhuǎn)90°得到圖2.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若|ax2+bx+c|=k(k≠0)有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( )
A. k<-3 B. k>-3 C. k<3 D. k>3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(+17)+(-12);
(2)10+(―)―6―(―0.25);
(3)()×48 ;
(4)|-5-4|-5×(-2)2-1÷(-)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家發(fā)改委實(shí)施“階梯電價(jià)”的有關(guān)文件要求,某市結(jié)合地方實(shí)際,決定從4月1日起對(duì)居民生活用電試行“階梯電價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見下表:
一戶居民一個(gè)月用電量的范圍 | 電費(fèi)價(jià)格(單位:元/度) |
不超過150度 | |
超過150度的部分 |
今年5月份,該市居民甲用電100度,交電費(fèi)60元;居民乙用電200度,交電費(fèi)122.5元.
(1)上表中, , ;
(2)試行“階梯電價(jià)”收費(fèi)以后,該市一戶居民今年8月份平均電價(jià)每度為0.63元,求該用戶8月用電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.(1)判斷∠M,∠A,∠B的關(guān)系;(2)請(qǐng)你嘗試改變問題中的某些條件,探索相應(yīng)的結(jié)論.建議:①折線中折線段數(shù)量增加到n條(n=3,4,…);
②可如圖1,圖2,或M點(diǎn)在平行線外側(cè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,點(diǎn)E在BC邊上,∠B=∠D,AB=AD,∠BAD=∠CAE,
(1)求證:AE=AC
(2)若∠AEC=60°,將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與△ABC重合,則這個(gè)旋轉(zhuǎn)角的度數(shù)__
(3)若AC=4,BC=7,∠AEC=60°,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)要在一塊等邊三角形內(nèi)修建一個(gè)圓形花壇.
(1)要使花壇面積最大,請(qǐng)你用尺規(guī)畫出圓形花壇示意圖;(保留作圖痕跡,不寫做法)
(2)若這個(gè)等邊三角形的周長為36米,請(qǐng)計(jì)算出花壇的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過點(diǎn)C作CF⊥CE交AB的延長線于點(diǎn)F,EF交BC于點(diǎn)G.
(1)求證:△CDE≌△CBF;
(2)當(dāng)DE=時(shí),求CG的長;
(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長;若不能,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com