【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去….若點A(,0),B(0,4),則點B4的坐標(biāo)為_____,點B2017的坐標(biāo)為_____.
【答案】(20,4) (10086,0)
【解析】
首先利用勾股定理得出AB的長,進(jìn)而得出三角形的周長,進(jìn)而求出B2,B4的橫坐標(biāo),進(jìn)而得出變化規(guī)律,即可得出答案.
由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標(biāo)為:10,B4的橫坐標(biāo)為:2×10=20,B2016的橫坐標(biāo)為:×10=10080.
∵B2C2=B4C4=OB=4,∴點B4的坐標(biāo)為(20,4),∴B2017的橫坐標(biāo)為10080++=10086,縱坐標(biāo)為0,∴點B2017的坐標(biāo)為:(10086,0).
故答案為:(20,4)、(10086,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點A、E、F均在格點上.在圖①、圖②中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖①中畫一個正方形ABCD,使其面積為5.
(2)在圖②中畫一個等腰△EFG,使EF為其底邊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=﹣1,與x軸的一個交點是A(﹣3,0)其圖象的一部分如圖所示,對于下列說法:①2a=b;②abc>0,③若點B(﹣2,y1),C(﹣,y2)是圖象上兩點,則y1<y2;④圖象與x軸的另一個交點的坐標(biāo)為(1,0).其中正確的是_____(把正確說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)連接CB,點K是線段CB的中點,點M是y軸上的一點,點P為直線CE下方拋物線上的一點,連接PC,PE,當(dāng)△PCE的面積最大時,求KM+PM的最小值;
(3)點G是線段CE的中點,將拋物線y=x2﹣2x﹣3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F,在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面直角坐標(biāo)系中,表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n是常數(shù),且mn≠0)圖象的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC,E在BC的延長線,聯(lián)結(jié)AE分別交BD、CD于點G、F,且.
(1)求證:AB//CD;
(2)若,BG=GE,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達(dá)C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com