【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AE的長.
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴DC∥AB,
∴∠OBE=∠ODF.
在△OBE與△ODF中,
∴△OBE≌△ODF(AAS).
∴BO=DO.
(2)
解:∵EF⊥AB,AB∥DC,
∴∠GEA=∠GFD=90°.
∵∠A=45°,
∴∠G=∠A=45°.
∴AE=GE
∵BD⊥AD,
∴∠ADB=∠GDO=90°.
∴∠GOD=∠G=45°.
∴DG=DO,
∴OF=FG=1,
由(1)可知,OE=OF=1,
∴GE=OE+OF+FG=3,
∴AE=3.
【解析】1)由平行四邊形的性質(zhì)和AAS證明△OBE≌△ODF,得出對應(yīng)邊相等即可;(2)證出AE=GE,再證明DG=DO,得出OF=FG=1,即可得出結(jié)果.
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示為一張長為m,寬為n(m<n)的小長方形紙片,現(xiàn)將8張該紙片按如圖2所示的方式無縫隙不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設(shè)左上角與右下角的陰影部分面積差為S,當(dāng)BC長度變化時,按照同樣的方式放置,S卻始終保持不變,則此時=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(-2,-1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點(diǎn)A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4.
(1)求點(diǎn)D的坐標(biāo);
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點(diǎn),且△ACE為等腰三角形,直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2 .
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】食品安全是老百姓關(guān)注的話題,在食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存和運(yùn)輸.某飲料加工廠生產(chǎn)的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產(chǎn)了A、B兩種飲料共100瓶,問A、B兩種飲料各生產(chǎn)了多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣1,0,1,2,3這五個數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點(diǎn)在x軸上的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移 個單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)A、B兩地之間的距離: km;
(2)甲的速度為 km/h;乙的速度為30km/h;
(3)點(diǎn)M的坐標(biāo)為 ;
(4)求:甲離B地的距離y(km)與行駛時間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com