【題目】如圖,△ABC是邊長(zhǎng)為3的等邊三角形,P是AB邊上的一個(gè)動(dòng)點(diǎn),由A向B運(yùn)動(dòng)(P不與A、B重合),Q是BC延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由C向BC延長(zhǎng)線方向運(yùn)動(dòng)(Q不與C重合),
(1)當(dāng)∠BPQ=90°時(shí),求AP的長(zhǎng);
(2)過(guò)P作PE⊥AC于點(diǎn)E,連結(jié)PQ交AC于D,在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,線段DE的長(zhǎng)是否發(fā)生變化?若不變,求出DE的長(zhǎng)度;若變化,求出變化范圍.
【答案】(1)AP=1;(2)線段DE的長(zhǎng)度不會(huì)改變;DE=1.5.
【解析】
(1)作PF∥BC交AC于F,由等邊三角形的性質(zhì)就可以得出△APF是等邊三角形,可證△PFD≌△QCD,由直角三角形的性質(zhì)就可以得出結(jié)論;
(2)作QF⊥AC,交直線AC的延長(zhǎng)線于點(diǎn)F,連接QE,PF,由點(diǎn)P、Q做勻速運(yùn)動(dòng)且速度相同,可知AP=CQ,再根據(jù)全等三角形的判定定理得出△APE≌△CQF,再由AE=CF,PE=QF且PE∥QF,可知四邊形PEQF是平行四邊形,進(jìn)而可得出AC =EC+AE=CE+CF=EF,故DE=AC,由等邊△ABC的邊長(zhǎng)為3可得出DE=1.5即可.
解:(1)作PF∥BC交AC于F,如圖1所示:
∴∠APF=∠B,∠AFP=∠ACB,∠FPD=∠CQD,∠PFD=∠QCD.
∵△ABC是等邊三角形,
∴∠A=∠B=∠ACB=60°,AB=BC=AC.
∴∠APF=∠AFP=∠A=60°,
∴△APF是等邊三角形,
∴AP=AF=PF.
∵Q與點(diǎn)P同時(shí)出發(fā),速度也相同,
∴AP=CQ,
∴PF=CQ,
∴在△PFD和△QCD中,
,
∴△PFD≌△QCD(ASA),
∴FD=CD.
∵∠APD=90°,且∠A=60°,
∴∠PDA=30°,
∴AD=2AP,
∴AD=2AF.
∵AF+FD=2AF,
∴FD=AF.
∴AF=FD=CD.
∴AF=AC.
∵AC=3,
∴AP=AF=1;
(2)當(dāng)點(diǎn)P、Q同時(shí)運(yùn)動(dòng)且速度相同時(shí),線段DE的長(zhǎng)度不會(huì)改變.DE=1.5.理由如下:
作QF⊥AC,交直線AC的延長(zhǎng)線于點(diǎn)F,連接QE,PF,如圖2所示:
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,PE∥QF,
∵點(diǎn)P、Q速度相同,
∴AP=CQ,
∵△ABC是等邊三角形,
∴∠A=∠ABC=∠FCQ=60°,
在△APE和△CQF中,
∵∠AEP=∠CFQ=90°,
∴∠APE=∠CQF,
∴在△APE和△CQF中,
,
∴△APE≌△CQF(AAS),
∴AE=CF,PE=QF,
∴四邊形PEQF是平行四邊形,
∴DE=EF,
∴AC =EC+AE=CE+CF=EF,
∴DE=AC,
又∵AC=3,
∴DE=1.5,
∴點(diǎn)P、Q同時(shí)運(yùn)動(dòng)且速度相同時(shí),線段DE的長(zhǎng)度不會(huì)改變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上,且BE=CD,EP∥AC交直線CD于點(diǎn)P,交直線AB于點(diǎn)F,∠ADP=∠ACB.
(1)圖1中是否存在與AC相等的線段?若存在,請(qǐng)找出,并加以證明,若不存在,說(shuō)明理由;
(2)若將“點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上”改為“點(diǎn)D在線段BA延長(zhǎng)線上,點(diǎn)E在線段BC延長(zhǎng)線上”,其他條件不變(如圖2).當(dāng)∠ABC=90°,∠BAC=60°,AB=2時(shí),求線段PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為4,D是直線BC上任一點(diǎn),線段DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到線段DE,連接CE.
(1)當(dāng)點(diǎn)D是BC的中點(diǎn)時(shí),如圖1,判斷線段BD與CE的數(shù)量關(guān)系 ;
(2)當(dāng)點(diǎn)D是BC邊上任一點(diǎn)時(shí),如圖2,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)D是BC延長(zhǎng)線上一點(diǎn)且CD=1時(shí),如圖3,求線段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),
畫(huà)出二次函數(shù)的圖象,并根據(jù)圖象說(shuō)明,當(dāng)取何值時(shí),圖象位于上方?
請(qǐng)說(shuō)明經(jīng)過(guò)怎樣平移函數(shù)的圖象得到函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E,F分別在等邊三角形ABC的三邊上,且DE⊥AB,EF⊥BC,FD⊥AC,過(guò)點(diǎn)F作FH⊥AB于H,則的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)為 A(2,2),B(5,3),C(3,5).
(1)請(qǐng)作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1,并寫(xiě)出點(diǎn)A的對(duì)稱點(diǎn)A1的坐標(biāo);
(2)點(diǎn)M是第一象限內(nèi)一點(diǎn)(不與點(diǎn)A重合),且M點(diǎn)的橫、縱坐標(biāo)都為整數(shù).
①若,請(qǐng)直接寫(xiě)出一個(gè)滿足條件的M點(diǎn)的坐標(biāo);
②若,請(qǐng)直接寫(xiě)出一個(gè)滿足條件的M點(diǎn)的坐標(biāo);
(3)將△A1B1C1向右平移n個(gè)單位長(zhǎng)度得到△A2B2C2,若△ABC與△A2B2C2關(guān)于某條直線l對(duì)稱,則直線l與x軸交點(diǎn)的橫坐標(biāo)為 (用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在研究相似問(wèn)題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:
甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形相似.
對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是( )
A.甲對(duì),乙不對(duì) B.甲不對(duì),乙對(duì) C.兩人都對(duì) D.兩人都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com