【題目】已知:在△ABC中,ABAC6,∠B30°,EBC上一點,BE2EC,DEDC,∠ADC60°,則AD的長_____

【答案】2

【解析】

A點做AGBC,連接AE,可得△BAE為RT△,且∠AEB=60,∠AEC=120,AE=CE,四邊形DAEC共圓,可得∠ADE=∠CDE=∠ADC=60°=30,過點A做AO⊥CD與O點,可得△OAC為等腰直角三角形,可得OA的長,進而求出AD的長.

解:如圖:

A點做AGBC,連接AE,AB=AC

GBC的中點,在RTABG中,AB=AC=6,∠B=30°

∠ACB=30°,AG==3,BG=CG=,

BC=2BG=

又BE=2EC,可得BE=,CE=,GE=

在RT△AGE中,AE===,

AE=CE=,

在△BAE中,AB=6,BE=,AE=,

可得

△BAE為RT△,∠BAE=90,

B=30,

∠AEB=60, ∠AEC=120,

在四邊形DAEC中,∠ADC=60°,∠AEC=120

∠ADC+∠AEC=180°,

四邊形DAEC共圓,

AE=CE=

∠ADE=∠CDE=∠ADC=60°=30,

過點A做AO⊥CD與O點,

在△DCE中,∠CDE=30,DE=DC

∠DCE==75,∠ACB=30

∠OCA=45,△OAC為等腰直角三角形

在RT△OAC中,AC=6,∠OCA=45,AO= AC=,

在RT△AOD中, AO=,∠ADO=60,可得AD==.

故答案:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象交于點A3,1),且過點B0,﹣2).

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)如果點Px軸上的一點,且ABP的面積是3,求點P的坐標;

3)若P是坐標軸上一點,且滿足PAOA,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.

(1)求證:FE⊥AB;

(2)當EF=6,=時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx-3經(jīng)過(-1,0),(3,0)兩點,與y軸交于點C,直線y=kx與拋物線交于A,B兩點.

(1)寫出點C的坐標并求出此拋物線的解析式;

(2)當原點O為線段AB的中點時,求k的值及A,B兩點的坐標;

(3)是否存在實數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:4x(2x+1)=3(2x+1),

(2)用配方法解方程:x2+6x﹣40=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是半徑為2的⊙O的直徑,點A在⊙O上,∠AMN=30°,點B為劣弧AN的中點.點P是直徑MN上一動點,則PAPB的最小值為(  )

A. 4 B. 2 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行節(jié)能減排,低碳經(jīng)濟政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求,若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范國,每套產(chǎn)品的售價不低于90萬元,生產(chǎn)總成本不高于1250萬元,已知這種設(shè)備的月產(chǎn)量x(套)與每套產(chǎn)品的售價y1(萬元)之間滿足關(guān)系式y1=130﹣x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)求出y2x之間的函數(shù)關(guān)系式,并求月產(chǎn)量x的范圍;

(2)當月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,ABBC.點D是線段AC上一點,連接BD.過點CCEBD于點E.點FAB垂直平分線上一點,連接BF、EF

(1)若AD=4,tan∠BCE,求AB的長;

(2)當點FAC邊上時,求證:∠FEC=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B,這時,海輪所在的B處距離燈塔P有多遠?(結(jié)果用非特殊角的三角函數(shù)表示即可)

查看答案和解析>>

同步練習(xí)冊答案