【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m22=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x2)2+m2=21,求m的值.
【答案】(1)-2;(2)2.
【解析】
(1)利用判別式的意義得到△=(2m+1)24(m22)≥0,然后解不等式得到m的范圍,再在此范圍內(nèi)找出最小整數(shù)值即可;
(2)利用根與系數(shù)的關(guān)系得到x1+x2=(2m+1),x1x2=m22,再利用(x1x2)2+m2=21得到(2m+1)24(m22)+m2=21,接著解關(guān)于m的方程,然后利用(1)中m的范圍確定m的值.
(1)根據(jù)題意得△=(2m+1)24(m22)≥0,
解得m≥,
所以m的最小整數(shù)值為2;
(2)根據(jù)題意得x1+x2=(2m+1),x1x2=m22,
∵(x1x2)2+m2=21,
∴(x1+x2)24x1x2+m2=21,
∴(2m+1)24(m22)+m2=21,
整理得m2+4m12=0,解得m1=2,m2=6,
∵m≥,
∴m的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知在中,,,直角的頂點(diǎn)是的中點(diǎn),兩邊、分別交和于點(diǎn)、,給出以下五個(gè)結(jié)論正確的個(gè)數(shù)有( )
①;②;③≌;④是等腰直角三角形;⑤當(dāng)在內(nèi)繞頂點(diǎn)旋轉(zhuǎn)時(shí)(點(diǎn)不與、重合),.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,直角梯形ABCD中,AB∥DC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長;
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請?zhí)骄?/span>是否為定值,若是,試求這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=76°,C為⊙O上一點(diǎn).
(Ⅰ)如圖①,求∠ACB的大小;
(Ⅱ)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D,若AB=AD.求∠EAC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到三角形EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A和點(diǎn)B都是反比例函數(shù)在第一象限內(nèi)圖象上的點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點(diǎn)D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點(diǎn)E,若的面積為6,則k的值為( )
A.2B.3C.6D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、
B(0,-3),點(diǎn)P是直線AB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時(shí),求△ABM的面積.
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com