【題目】如圖,將三角形ABC繞點C順時針旋轉90°得到三角形EDC.若點AD,E在同一條直線上,∠ACB20°,求∠ADC的度數(shù).

【答案】ADC65°

【解析】

根據(jù)旋轉的性質和三角形內角和解答即可.

解:ABC繞點C順時針旋轉90°得到EDC

∴∠DCEACB20°BCDACE90°,ACCE

∴∠ACD90°20°70°,

A,D,E在同一條直線上,

∴∠ADC+∠EDC180°,

∵∠EDC+∠E+∠DCE180°,

∴∠ADCE+20°,

∵∠ACE90°ACCE

∴∠DAC+∠E90°,EDAC45°

ADC中,ADC+∠DAC+∠DCA180°,

45°+70°+∠ADC180°

解得:ADC65°,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O的內接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.

(1)求證:△ABD是等邊三角形;

(2)若BD=6cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關系,部分數(shù)據(jù)如表所示,其中3.5x5.5,另外每天還需支付其他各項費用80元.

銷售單價x(元)

3.5

5.5

銷售量y(袋)

280

120

1)請直接寫出yx之間的函數(shù)關系式;

2)如果每天獲得160元的利潤,銷售單價為多少元?

3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c,函數(shù)值y與自變量x之間的部分對應值如下表:

x

4

1

0

1

y

2

1

2

7

1)此二次函數(shù)圖象的對稱軸是直線,此函數(shù)圖象與x軸交點個數(shù)為   

2)求二次函數(shù)的函數(shù)表達式;

3)當﹣5x<﹣1時,請直接寫出函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2m+1)x+m22=0

1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;

2)若方程的兩個實數(shù)根為x1,x2,且(x1x2)2+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚女排精神,組建了排球社團,通過測量同學們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中提供的信息,解答下列問題.

(1)填空:樣本容量為___,a=___

(2)把頻數(shù)分布直方圖補充完整;

(3)若從該組隨機抽取1名學生,估計這名學生身高低于165cm的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們環(huán)保意識的不斷增強,延安市家庭電動自行車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2016年底擁有家庭電動自行車125,2018年底家庭電動自行車的擁有量達到180.若該小區(qū)2016年底到2018年底家庭電動自行車擁有量的平均增長率相同且均為x,則可列方程為( )

A.125=180B.=180

C.125(1+x)(1+2x)=180D.125=180

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠水青山,就是金山銀山,為了改善生態(tài)環(huán)境,某縣政府準備對境內河流進行清淤、疏通河道,同時在人群密集區(qū)沿河流修建濱河步道,打造生態(tài)濕地公園.

1201811月至12月,一期工程原計劃疏通河道和修建濱河步道里程數(shù)共計20千米,其中修建濱河步道里程數(shù)是疏通河道里程數(shù)的倍,那么,原計劃修建濱河步道多少千米?

2)至201812月底,一期工程順利按原計劃完成總共耗資840萬元,其中疏通河道工程共耗資600萬元;2019年二期工程開工后,疏通河道每千米工程費用較一期降低2.5a%,里程數(shù)較一期增加3a%;修建濱河步道每千米工程費用較一期上漲2.5a%,里程數(shù)較一期增加5a%,經(jīng)測算,二期工程總費用將比一期增加2a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2+2x+m

1)如果拋物線過點A3,0),與y軸交于點B,求拋物線的解析式及點B、C的坐標;

2)如圖,直線AB與這條拋物線的對稱軸交于點P,求直線AB的表達式和點P的坐標.

3)該拋物線有一點Dx,y),使得SABC=SACD,求點D的坐標.

查看答案和解析>>

同步練習冊答案