【題目】已知,在矩形ABCD中,AB=4,BC=2,點M為邊BC的中點,點P為邊CD上的動點(點P異于C,D兩點).連接PM,過點P作PM的垂線與射線DA相交于點E(如圖),設CP=x,DE=y.
(1)寫出y與x之間的關系式;
(2)若點E與點A重合,則x的值為
(3)是否存在點P,使得點D關于直線PE的對稱點D′落在邊AB上?若存在,求x的值;若不存在,請說明理由.

【答案】
(1)y=﹣x2+4x
(2)2+ 或2﹣
(3)解:存在,過P作PH⊥AB于點H,

∵點D關于直線PE的對稱點D′落在邊AB上,

∴PD′=PD=4﹣x,ED′=ED=y=﹣x2+4x,EA=AD﹣ED=x2﹣4x+2,∠PD′E=∠D=90°,

在Rt△D′PH中,PH=2,D′P=DP=4﹣x,

根據(jù)勾股定理得:D′H= =

∵∠ED′A=180°﹣90°﹣∠PD′H=90°﹣∠PD′H=∠D′PH,∠PD′E=∠PHD′=90°,

∴△ED′A∽△D′PH,

,即 = =x= ,

整理得:2x2﹣4x+1=0,

解得:x=

當x= 時,y=﹣( 2+4× = >2,

此時,點E在邊DA的延長線上,D關于直線PE的對稱點不可能落在邊AB上,所以舍去.

當x= 時,y=﹣( 2+4× = <2,此時,點E在邊AD上,符合題意.

所以當x= 時,點D關于直線PE的對稱點D′落在邊AB上


【解析】解:(1)∵PE⊥PM,∴∠EPM=90°, ∴∠DPE+∠CPM=90°,
又矩形ABCD,∴∠D=90°,
∴∠DPE+∠DEP=90°,
∴∠CPM=∠DEP,又∠C=∠D=90°,
∴△CPM∽△DEP,
,
又CP=x,DE=y,AB=DC=4,∴DP=4﹣x,
又M為BC中點,BC=2,∴CM=1,
,
則y=﹣x2+4x;
所以答案是:y=﹣x2+4x;(2)當E與A重合時,DE=AD=2,
∵△CPM∽△DEP,
,
又CP=x,DE=2,CM=1,DP=4﹣x,
,即x2﹣4x+2=0,
解得:x=2+ 或x=2﹣ ,
則x的值為2+ 或2﹣
所以答案是:2+ 或2﹣ ;
【考點精析】解答此題的關鍵在于理解矩形的性質(zhì)的相關知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是;
(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率是(用樹狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年我市體育中考的現(xiàn)場選測項目中有一項是“排球30秒對墻墊球”,為了了解某學校九年級學生此項目平時的訓練情況,隨機抽取了該校部分九年級學生進行測試,根據(jù)測試結果,制作了如下尚不完整的頻數(shù)分布表:

組別

墊球個數(shù)x(個)

頻數(shù)(人數(shù))

頻率

1

10≤x<20

5

0.10

2

20≤x<30

a

0.18

3

30≤x<40

20

b

4

40≤x<50

16

0.32

合計

1


(1)表中a= , b=
(2)這個樣本數(shù)據(jù)的中位數(shù)在第組;
(3)下表為≤體育與健康≥中考察“排球30秒對墻墊球”的中考評分標準,若該校九年級有500名學生,請你估計該校九年級學生在這一項目中得分在7分以上(包括7分)學生約有多少人? 排球30秒對墻墊球的中考評分標準

分值

10

9

8

7

6

5

4

3

2

1

排球(個)

40

36

33

30

27

23

19

15

11

7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解 如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)

(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為 應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角. 請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒有其它區(qū)別,從袋中隨機地摸出1只球,記錄下顏色后放回攪勻,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進一步推進海南國際旅游島建設,?谑凶2012年4月1日起實施《?谑歇剟盥眯猩玳_發(fā)客源市場暫行辦法》,第八條規(guī)定:“旅行社引進會議規(guī)模達到200人以上,入住本市A類旅游飯店,每次會議獎勵2萬元;入住本市B類旅游飯店,每次會議獎勵1萬元.”某旅行社5月份引進符合獎勵規(guī)定的會議共18次,得到28萬元獎金,求此旅行社引進符合獎勵規(guī)定的入住A類和B類旅游飯店的會議各多少次?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,點P、Q分別在邊AB、BC上,且AP=BQ.
(1)求證:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.

(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.

(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;
(2)小球的落點是A,求點A的坐標;
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標.

查看答案和解析>>

同步練習冊答案