如圖,以△ABC的邊AB為直徑的⊙O經過BC的中點D,過D作DE⊥AC于E.
(1)求證:AB=AC
(2)求證:DE是⊙O的切線
(3)若AB=10,∠ABC=30°,求DE的長.

【答案】分析:(1)利用直徑所對的圓周角是直角和等腰三角形的三線合一可以得到AB=AC;
(2)連接OD,利用平行線的判定定理可以得到∠ODE=∠DEC=90°,從而判斷DE是圓的切線.
解答:證明:(1)∵AB是⊙O的直徑
∴∠ADB=90°
∴AD⊥BC,又D是BC的中點
∴AB=AC       (4分)
(2)連OD,
∵O、D分別是AB、BC的中點
∴OD∥AC
∴∠ODE=∠DEC=90°
∴DE是⊙O的切線       (4分)
(3)∵AB=10,∠ABC=30°,
∴AD=5
∵∠ABC=30°
∴∠ODB=30°,∠ADO=60°,∠ADE=30°
DE=5cos30°=
∴DE的長為(2分)
點評:本題目考查了等腰三角形的判定及性質、圓周角定理及切線的性質,涉及的知識點比較多且碎,解題時候應該注意.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當∠BAC滿足什么條件時,四邊形ADFE是矩形;
(2)當∠BAC滿足什么條件時,平行四邊形ADFE不存在;
(3)當△ABC分別滿足什么條件時,平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點,交AC于E點,BD=DE
(1)求證:△ABC是等腰三角形;
(2)若E是AC的中點,求
BD
的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•峨眉山市二模)如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點,過D作DE⊥AC,交AC于點E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BD=8,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•黔東南州)如圖,以△ABC的邊BC為直徑作⊙O分別交AB,AC于點F.點E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求證:DM2=DH•DA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的邊AB為直徑的⊙O交AC于點D,弦DE∥AB,∠C=∠BAF
(1)求證:BC為⊙O的切線;
(2)若⊙O的半徑為5,AD=2
5
,求DE的長.

查看答案和解析>>

同步練習冊答案