如圖,已知拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點(diǎn),(x1<x2)且(x1+1)(x2+1)=5
(1)試確定m的值;
(2)過點(diǎn)A(-1,-5)和拋物線的頂點(diǎn)M的直線交x軸于點(diǎn)B,求B點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P(a,b)是拋物線上點(diǎn)C到點(diǎn)M之間的一個(gè)動(dòng)點(diǎn)(含C、M點(diǎn)),△POQ是以PO為腰、底邊OQ在x軸上的等腰三角形,過點(diǎn)Q作x軸的垂線交直線AM于點(diǎn)R,連接PR.設(shè)△PQR的面積為S,求S與a之間的函數(shù)關(guān)系式.

【答案】分析:(1)用m表示出二次函數(shù)兩個(gè)根的和、積,代入等式(x1+1)(x2+1)=5,并結(jié)合△=(3-m)2-4m(m2+m)>0,解出即可;
(2)由拋物線的解析式得出頂點(diǎn)坐標(biāo),又∵A(-1,-5),用待定系數(shù)法可求出直線的解析式,令y=0,即可求出x,得點(diǎn)B的坐標(biāo);
(3)點(diǎn)P(a,b),根據(jù)題意得,Q點(diǎn)坐標(biāo)為(2a,0),由直線的解析式得,點(diǎn)R的坐標(biāo)為(2a,6a-2),過點(diǎn)P作PN⊥RQ于點(diǎn)N,則RQ=|6a-2|,PN=|a|,所以,=,分類討論解答出即可.
解答:解:(1)因?yàn)閽佄锞y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點(diǎn)(x1<x2)且(x1+1)(x2+1)=5,
∴m≠0
,,且△=(3-m)2-4m(m2+m)>0,
又∵x1x2+x1+x2+1=5,
,
解得m=-1,或m=3,而m=3使△<0,不合題意,故舍去,
∴m=-1;

(2)由(1)知拋物線的解析式為y=-x2+4x,
∴頂點(diǎn)M的坐標(biāo)為(2,4).如圖,
設(shè)直線AM的解析式為y=kx+b,
∵A(-1,-5),
則有,
解得,
∴y=3x-2,
當(dāng)y=0時(shí),,
∴B點(diǎn)的坐標(biāo)為(,0);

(3)依題意,點(diǎn)P(a,b)是拋物線上點(diǎn)C到點(diǎn)M之間的一個(gè)動(dòng)點(diǎn),
∴0<a≤2,
∴Q點(diǎn)坐標(biāo)為(2a,0),
由(2)知直線AM為y=3x-2,
∴當(dāng)x=2a時(shí),y=6a-2,
∴點(diǎn)R的坐標(biāo)為(2a,6a-2),
過點(diǎn)P作PN⊥RQ于點(diǎn)N,
∵RQ=|6a-2|,PN=|a|,
=,
當(dāng)時(shí),=-3a2+a,
當(dāng)時(shí),△PQR不存在;
當(dāng)時(shí),=3a2-a.
點(diǎn)評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有拋物線的頂點(diǎn)公式、解析式和三角形的面積求法等;在求有關(guān)動(dòng)點(diǎn)問題時(shí)要注意分析題意、分情況討論結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案