【題目】如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點(diǎn)F,設(shè)AB=m,BC=n.

(1)求證:∠BDA=∠ECA.

(2)若m=,n=3,∠ABC=75°,求BD的長(zhǎng).

(3)當(dāng)∠ABC=____時(shí),BD最大,最大值為____(用含m,n的代數(shù)式表示)

(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。

【答案】135° m+n

【解析】

試題

(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;

(2)過(guò)點(diǎn)EEG⊥CBCB的延長(zhǎng)線于點(diǎn)G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長(zhǎng)可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=

(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點(diǎn)共線時(shí),EC最大=BE+BC=,此時(shí)BD最大=EC最大=

(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.

試題解析

(1)∵△ABE△ACD都是等腰直角三角形,∠EAB=∠DAC=90°,

∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,

∴△EAC≌△BAD,

∴∠BDA=∠ECA;

(2)如下圖,過(guò)點(diǎn)EEG⊥CBCB的延長(zhǎng)線于點(diǎn)G,

∴∠EGB=90°,

在等腰直角△ABE,∠BAE=90°,AB=m= ,

∴∠ABE=45°,BE=2,

∵∠ABC=75°,

∴∠EBG=180°-75°-45°=60°,

∴BG=1,EG=,

∴GC=BG+BC=4,

∴CE=,

∵△EAC≌△BAD,

∴BD=EC=;

(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點(diǎn)共線時(shí),EC最大=BE+BC=,

∵BD=EC,

∴BD最大=EC最大=,此時(shí)∠ABC=180°-∠ABE=180°-45°=135°,

即當(dāng)∠ABC=135°時(shí),BD最大=

(4)∵△ABD≌△AEC,

∠AEC=∠ABD,

∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,

∴∠ABD+∠ABE+∠CEB=90°,

∴∠BFE=180°-90°=90°,

∴EF2+BF2=BE2,

在等腰Rt△ABE中,BE2=2AE2,

∴2AE2=EF2+BF2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,將ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EFAB、AC邊分別交于點(diǎn)EF,如果折疊后CDFBDE均為等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,

1)若∠ABC=60°,∠ACB=40°,求∠BOC的度數(shù);

2)若∠ABC=60°,OB=4,且△ABC的周長(zhǎng)為16,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)學(xué)生就“食品安全知識(shí)”進(jìn)行了抽樣調(diào)查(每人選填一類(lèi)),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。

(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)量,水價(jià)分為三個(gè)階梯,價(jià)格表如下表所示:

某市自來(lái)水銷(xiāo)售價(jià)格表

類(lèi)別

月用水量

(立方米)

供水價(jià)格

(元/立方米)

污水處理費(fèi)

(元/立方米)

居民生活用水

階梯一

0~18(含18)

1.90

1.00

階梯二

18~25(含25)

2.85

階梯三

25以上

5.70

(注:居民生活用水水價(jià)=供水價(jià)格+污水處理費(fèi))

(1)當(dāng)居民月用水量在18立方米及以下時(shí),水價(jià)是_____元/立方米.

(2)4月份小明家用水量為20立方米,應(yīng)付水費(fèi)為:

18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)

預(yù)計(jì)6月份小明家的用水量將達(dá)到30立方米,請(qǐng)計(jì)算小明家6月份的水費(fèi).

(3)為了節(jié)省開(kāi)支,小明家決定每月用水的費(fèi)用不超過(guò)家庭收入的1%,已知小明家的平均月收入為7530元,請(qǐng)你為小明家每月用水量提出建議

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,將ABCD放置在第一象限,且ABx軸.直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過(guò)程中直線被平行四邊形截得的線段長(zhǎng)度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)(0,6),ACy軸,且AC=AO,點(diǎn)B,C橫坐標(biāo)相同,點(diǎn)D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)B、D.

(1)求:k及點(diǎn)B坐標(biāo);

(2)將AOD沿著OD折疊,設(shè)頂點(diǎn)A的對(duì)稱點(diǎn)A1的坐標(biāo)是A1(m,n),求:代數(shù)式m+3n的值以及點(diǎn)A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點(diǎn)MAN的中點(diǎn),過(guò)點(diǎn)EAD平行的直線交射線AM于點(diǎn)N。

1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:AD=NE ;

2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):如圖①,在ABC中,∠B=C=45°,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且∠ADE=AED,連結(jié)DE.

(1)當(dāng)∠BAD=60°時(shí),求∠CDE的度數(shù);

(2)當(dāng)點(diǎn)DBC(點(diǎn)B、C除外)邊上運(yùn)動(dòng)時(shí),試探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:如圖②,若∠B=C,但∠C≠45°,其它條件不變,試?yán)^續(xù)探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案