若點(diǎn)A(x,y)在坐標(biāo)軸上,則


  1. A.
    x=0
  2. B.
    y=0
  3. C.
    xy=0
  4. D.
    x+y=0
C
分析:根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn),讓x為0,或y為0即可.
解答:∵點(diǎn)A(x,y)在坐標(biāo)軸上,
∴x=0,或y=0,
∴xy=0.
故選C.
點(diǎn)評(píng):用到的知識(shí)點(diǎn)為:坐標(biāo)軸上的點(diǎn)的橫坐標(biāo)為0或縱坐標(biāo)為0或兩者均為0;無(wú)論橫坐標(biāo)為0還是縱坐標(biāo)為0還是兩者均為0,相乘的結(jié)果一定為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫出這條拋物線;
(2)若點(diǎn)(x0,y0)在拋物線上,且1≤x0≤4,寫出y0的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線y=2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線AB上有一點(diǎn)Q在第一象限且到y(tǒng)軸的距離為2.
(1)求點(diǎn)A、B、Q的坐標(biāo),
(2)若點(diǎn)P在坐x軸上,且PO=24,求△APQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)B的橫坐標(biāo)是-3,縱坐標(biāo)是2,則點(diǎn)B的坐標(biāo)記作
(-3,2)
(-3,2)
,點(diǎn)B在第
象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線yax2bxc(a>0)經(jīng)過(guò)點(diǎn)B(12,0)和C(0,-6),對(duì)稱軸為x=2.

(1)求該拋物線的解析式.

(2)點(diǎn)D在線段AB上且ADAC,若動(dòng)點(diǎn)PA出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若存在,請(qǐng)說(shuō)明理由.

(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐

標(biāo);若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年江蘇省蘇州市相城區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫出這條拋物線;
(2)若點(diǎn)(x,y)在拋物線上,且1≤x≤4,寫出y的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案