【題目】如圖,在中,已知:,,,以斜邊AB的中點P為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積為__________.
【答案】
【解析】
如圖,在Rt△DPB中, 根據(jù)勾股定理求得DP=,再證明△B′PH≌△BPD,根據(jù)全等三角形的性質(zhì)可得PH=PD=;在直角△BGH中,BH=3+,可求得GH=,BG=(3+),根據(jù)SDGHP= S△BGH- S△BDP即可求得重合部分的面積.
如圖,在直角△DPB中,BP=AP=AC=3,設(shè)DP=x,
∵∠A=60°,
∴DP2+BP2=BD2,
∴x2+32=(2x)2,
∴DP=x=,
∵在△B′PH和△BPD中,,
∴△B′PH≌△BPD,
∴PH=PD=,
∵在直角△BGH中,BH=3+,
∴GH=,BG=(3+),
∴S△BGH=××(3+)=,S△BDP=×3×=,
∴SDGHP=-=cm2.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子里裝有獨立包裝的口罩,其中粉色口罩有3個、藍色口罩有2個,這些口罩除了顏色外全部相同,從中隨機依次不放回拿出兩個口罩,則兩個口罩都是粉色的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為普及防治新型冠狀病毒感染的科學(xué)知識和有效方法,不斷增強同學(xué)們的自我保護意識,學(xué)校舉辦了新型冠狀病毒疫情防控網(wǎng)絡(luò)知識競答活動,試卷題目共10題,每題10分.現(xiàn)分別從七年級的三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如表:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分數(shù) | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | a | 1 |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | |
2班 | 83 | c | d |
3班 | b | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中a,b,c,d的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;
(3)為了讓同學(xué)們重視疫情防控知識的學(xué)習(xí),學(xué)校將給競答成績滿分的同學(xué)頒發(fā)獎狀,該校七年級新生共600人,試估計需要準備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,0,1,,,3這六個數(shù)中,隨機抽取一個數(shù)記為a,則使關(guān)于x的二次函數(shù)y=x2+(3﹣a)x﹣1在x<﹣1的范圍內(nèi)y隨x的增大而減小,且使關(guān)于x的分式方程2﹣=的解為正數(shù)的a共有( )
A.2個B.3個C.4個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:對任意一個n位正整數(shù)M(n≥3),若M與它的十位數(shù)字的p倍的差能被整數(shù)q整除,則稱這個數(shù)為“p階q級數(shù)”,例如:712是“5階7級數(shù)”,因為=101;712也是“12階10級數(shù)”,因為=70.
(1)若415是“5階k級數(shù)”,且k<300,求k的最大值;
(2)若一個四位數(shù)M的百位數(shù)字比個位數(shù)字大2,十位數(shù)字為1,且M既是“4階13級數(shù)”又是“6階5級數(shù)”,求這個四位數(shù)M.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BD平分∠ABC,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好經(jīng)過點D.
(1)求證:直線AC是⊙O的切線;
(2)若∠A=30°,⊙O的半徑是2,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年伊始,一場突如其來的疫情防控戰(zhàn)在中華大地驟然打響,全國人民自覺居家減少外出,師生停課不停學(xué),舉國共抗疫情.某中學(xué)在復(fù)學(xué)后,為了了解學(xué)生們在居家期間的生活狀態(tài),以更好地保護復(fù)學(xué)后學(xué)生們的身心健康,對本校學(xué)生進行了“居家期間學(xué)習(xí)之余主要活動”的抽樣調(diào)查.種類為:(A)強身健體、(B)藝術(shù)熏陶、(C)經(jīng)典閱讀、(D)分擔勞動、(E)其他.針對以上活動種類,統(tǒng)計學(xué)生們花時間最多的種類的人數(shù),以繪制成如下兩幅不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請根據(jù)圖中的信息,回答下列問題.
(1)被抽樣調(diào)查的總?cè)藬?shù)為 人;
(2)補全條形統(tǒng)計圖;
(3)若該校共有學(xué)生1800人,請估算種類D的大約人數(shù);
(4)據(jù)此疫情經(jīng)歷,給自己提出一條人生建議 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6,點D為AC中點,點E為邊AB上一動點,點F為射線BC上一動點,且∠FDE=90°.
(1)當DF∥AB時,連接EF,求∠DEF的余切值;
(2)當點F在線段BC上時,設(shè)AE=x,BF=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)連接CE,若△CDE為等腰三角形,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com