【題目】某市為了增強學生體質,全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數統(tǒng)計圖:
(1)本次被調查的學生有 名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖中所占圓心角的度數;
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
【答案】(1)200;(2)統(tǒng)計圖見解析;90°;(3)144.
【解析】試題分析:(1)喜好“核桃味”牛奶的學生人數除以它所占的百分比即可得本次被調查的學生人數;
(2)用本次被調查的學生的總人數減去喜好原味、草莓味、菠蘿味、核桃味的人數得出喜好香橙味的人數,補全條形統(tǒng)計圖即可,用喜好“菠蘿味”牛奶的學生人數除以總人數再乘以360°,即可得喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖2中所占圓心角的度數;
(3)用喜好草莓味的人數占的百分比減去喜好原味的人數占的百分比,再乘以該校的總人數即可.
試題解析:(1)10÷5%=200(名)
(2)200-38-62-50-10=40(名),
條形統(tǒng)計圖如下:
×360°=90°,
故喜好“菠蘿味”牛奶的學生人數在扇形統(tǒng)計圖2中所占圓心角的度數為90°;
(3)1200×()=144(盒),
故草莓味要比原味多送144盒.
科目:初中數學 來源: 題型:
【題目】如圖,在坐標平面內,已知點A(0,3)、B(6,5),
(1)連接AB,在x軸上確定點P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點坐標;
(2)點Q是x軸上的動點,求點Q與A、B兩點的距離之和的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某農戶發(fā)展養(yǎng)禽業(yè),準備利用現有的34米長的籬笆靠墻AB(墻長為25米)圍成一個面積為120平方米的長方形養(yǎng)雞場,這個養(yǎng)雞場的長和寬各是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B,F,C,E在直線l上(F,C之間不能直接測量),點A,D在l異側,測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲于某日下午1時騎自行車從A地出發(fā)前往B地,乙于同日下午騎摩托車從A地出發(fā)前往B地,如圖所示,圖中折線PQR和線段MN分別表示甲和乙所行駛的路程和時間之間的關系圖象,試根據圖象回答下列問題.
(1)A、B兩地相距多少千米?甲出發(fā)幾小時,乙才開始出發(fā)?
(2)甲騎自行車的平均速度是多少?乙騎摩托車的平均速度是多少?
(3)乙在該日下午幾時追上了甲?這時兩人離B地還有多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四點A、B、C、D.
(1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:
①畫直線AB.
②畫射線DC.
③延長線段DA至點E,使.(保留作圖痕跡)
④畫一點P,使點P既在直線AB上,又在線段CE上.
(2)在(1)中所畫圖形中,若cm,cm,點F為線段DE的中點,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】[x]表示不超過x的最大整數,例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:①當x=﹣0.5時,y=0.5;②y的取值范圍是:0≤y≤1;③對于所有的自變量x,函數值y隨著x增大而一直增大.其中正確命題有 (只填寫正確命題的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:兩個二次項系數之和為1,對稱軸相同,且圖象與y軸交點也相同的二次函數互為友好同軸二次函數例如:的友好同軸二次函數為.
請你分別寫出,的友好同軸二次函數;
滿足什么條件的二次函數沒有友好同軸二次函數?滿足什么條件的二次函數的友好同軸二次函數是它本身?
如圖,二次函數:與其友好同軸二次函數都與y軸交于點A,點B、C分別在、上,點B,C的橫坐標均為,它們關于的對稱軸的對稱點分別為,,連結,,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】上午8時,一條船從海島A出發(fā),以15海里/時的速度向正北航行,10時到達海島B處,從A,B望燈塔C,測得∠NAC=30,∠NBC=60.
(1)求從海島B到燈塔C的距離;
(2)這條船繼續(xù)向正北航行,問在上午或下午的什么時間小船與燈塔C的距離最短?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com