【題目】如圖,實線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長相同,求圖中∠MON的度數(shù).

【答案】MON=33°.

【解析】

由正方形、正五邊形和正六邊形的性質(zhì)得到∠AOM=108°,∠OBC=120°,∠NBC=90°,求得∠AOB=×120°=60°,∠MOB=108°-60°=48°,得到∠OBN=360°-120°-90°=150°,根據(jù)角和差即可得到結(jié)論.

解:如圖,

由正方形、正五邊形和正六邊形的定義得:

AOM=108°,∠OBC= 120°,∠NBC =90°,

∴∠AOB=120°=60°,∠MOB = 108° – 60°= 48°

∴∠OBN= 360°- 120°- 90°= 150°,

∴∠NOB=(180°-150°)=15°

∴∠MON=48°-15°=33°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置的是一副斜邊相等的直角三角板,其中ABBC,連接BD交公共的斜邊ACO點.

(1)證明:BD平分∠ADC;

(2)求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點PB、C兩點距離之和最小時,∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③x>1時,yx的增大而減; ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是( 。

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷水杯,電熱水壺兩種商品,水杯每個進價15元,售價20元;電熱水壺每個進價35元,售價45元.

(1)若該商場同時購進水杯、電熱水壺共100件,恰好用去2700元,求能購進水杯、電熱水壺各多少個?

(2)商場要求小明用1050元的錢(必須全部用完)采購水杯、電熱水壺(或其中一種商品),且還要求總利潤不少于340元(假設(shè)商品全部賣完),請你確定所有的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=DEAC=DF,BF=EC

1)求證:△ABC≌△DEF

2)若,求BF的長;

3∠B=60°,∠D=70°,求∠AGD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB的垂直平分線EFBC于點E,交AB于點F,D是線段CE的中點,ADBC于點D.若∠B36°BC8,則AB的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB,△COD是等腰直角三角形,點DAB上.

1)求證:△ACO≌△BDO;

2)若∠BOD30°,求∠ACD度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AB的垂直平分線交ABN,交BC的延長線于M,∠A=40°.

⑴求∠NMB的大。

⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB= ;

⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對這個問題規(guī)律性的認識是否需要加以修改?

查看答案和解析>>

同步練習冊答案