【題目】如圖,△AOB,△COD是等腰直角三角形,點(diǎn)DAB上.

1)求證:△ACO≌△BDO;

2)若∠BOD30°,求∠ACD度數(shù).

【答案】1)證明見(jiàn)解析;(2)∠ACD60°.

【解析】

1)根據(jù)等腰直角三角形得出OC=ODOA=OB,∠AOB=COD=90°,求出∠AOC=BOD,根據(jù)全等三角形的判定定理推出即可;

2)根據(jù)全等三角形的性質(zhì)求出∠BOD=∠ACO30°,∠CAO=∠OBD45°,然后利用三角形內(nèi)角和求出∠ACO進(jìn)而求解

解:(1)∵△AOB,△COD是等腰直角三角形,

OCOD、AOBO、∠COA+AOD=∠DOB+AOD90°,

∴∠COA=∠DOB,

∴△ACO≌△BDO SAS),

2)解:∵△ACO≌△BDO,

∴∠BOD=∠ACO30°,∠CAO=∠OBD45°,

∴∠ACO180°﹣30°﹣45°=105°,

∴∠ACDACO﹣∠OCD105°﹣45°=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣10),C(﹣4,3).

1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母AB、C,并求出ABC的面積;

2)在圖中作出ABC關(guān)于y軸的對(duì)稱圖形A1B1C1;

3)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,實(shí)線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長(zhǎng)相同,求圖中∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以點(diǎn)O為支點(diǎn)的杠桿,在A端用豎直向上的拉力將重為G的物體勻速拉起,當(dāng)杠桿OA水平時(shí),拉力為F;當(dāng)杠桿被拉至OA1時(shí),拉力為F1,過(guò)點(diǎn)B1B1C⊥OA,過(guò)點(diǎn)A1A1D⊥OA,垂足分別為點(diǎn)C、D①△OB1C∽△OA1D; ②OAOC=OBOD③OCG=ODF1;④F=F1

其中正確的說(shuō)法有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請(qǐng)你寫(xiě)出下列三個(gè)代數(shù)式:(a+b2,a2+b2ab之間的等量關(guān)系.______;

3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)圖形驗(yàn)證:

a+b)(a+2b=a2+3ab+2b2

4)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是在寫(xiě)字臺(tái)上放置一本攤開(kāi)的數(shù)學(xué)書(shū)和一個(gè)折疊式臺(tái)燈時(shí)的截面示意圖,已知攤開(kāi)的數(shù)學(xué)書(shū)AB長(zhǎng)20cm,臺(tái)燈上半節(jié)DE長(zhǎng)40cm,下半節(jié)DC長(zhǎng)50cm.當(dāng)臺(tái)燈燈泡E恰好在數(shù)學(xué)書(shū)AB的中點(diǎn)O的正上方時(shí),臺(tái)燈上、下半節(jié)的夾角即∠EDC=120°,下半節(jié)DC與寫(xiě)字臺(tái)FG的夾角即∠DCG=75°,求BC的長(zhǎng).(書(shū)的厚度和臺(tái)燈底座的寬度、高度都忽略不計(jì),F、A、O、B、C、G在同一條直線上.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公交車行駛在筆直的公路上,這條路上有A,B,C,D四個(gè)站點(diǎn),每相鄰兩站之間的距離為5千米,從A站開(kāi)往D站的車稱為上行車,從D站開(kāi)往A站的車稱為下行車,第一班上行車、下行車分別從A站、D站同時(shí)發(fā)車,相向而行,且以后上行車、下行車每隔10分鐘分別在A,D站同時(shí)發(fā)一班車,乘客只能到站點(diǎn)上、下車(上、下車的時(shí)間忽略不計(jì)),上行車、下行車的速度均為30千米/小時(shí).

(1)問(wèn)第一班上行車到B站、第一班下行車到C站分別用時(shí)多少?

(2)若第一班上行車行駛時(shí)間為t小時(shí),第一班上行車與第一班下行車之間的距離為s千米,求st的函數(shù)關(guān)系式;

(3)一乘客前往A站辦事,他在B,C兩站間的P處(不含B,C站),剛好遇到上行車,BP=x千米,此時(shí),接到通知,必須在35分鐘內(nèi)趕到,他可選擇走到B站或走到C站乘下行車前往A站.若乘客的步行速度是5千米/小時(shí),求x滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案