【題目】如圖1,已知直線和直線交于軸上一點,且分別交軸于點、點,且.

1)求的值;

2)如圖1,點是直線上一點,且在軸上方,當(dāng)時,在線段上取一點,使得,點分別為軸、軸上的動點,連接,將沿翻折至,求的最小值;

3)如圖2,分別為射線上的動點,連接是否存在這樣的點,使得為等腰三角形,為直角三角形同時成立.請直接寫出滿足條件的點坐標(biāo).

【答案】1;(2;(3

【解析】

1)首先由已知得出點BC的坐標(biāo),即可得出直線AC的解析式,然后得出點A的坐標(biāo),代入直線AB,即可得出的值;

2)首先根據(jù)ACD的面積求出點D坐標(biāo),然后由得出點F的坐標(biāo)和CF,若使有最小值,則M、C′、D在一條直線上,作FC′關(guān)于軸的對稱點F′C′′,根據(jù)DF′的坐標(biāo)得出DF′,然后即可得解;

3)若使得為等腰三角形,為直角三角形同時成立,則分情況求解,HAC上和AC的延長線上,根據(jù)平行線成比例和相似三角形的性質(zhì),列出方程,即可得出P坐標(biāo).

1)由已知,得

,C軸正半軸,B軸負半軸

∴直線,直線

,將其代入直線AB,

2)∵點是直線上一點,設(shè)點D坐標(biāo)為

,即D

,C′在以CF為半徑的圓上,

若使有最小值,則M、C′D在一條直線上,作FC′關(guān)于軸的對稱點F′C′′,如圖所示,則,

3)根據(jù)題意,分情況求解:

PHOA,則HP=HC,HPCN

設(shè)Hx,y)可得

,

PHAC,則HP=HC,

APH∽△ACO

設(shè),可得

PHOA,∠H=ACO=60°

HP=HC=PC

設(shè)Hx,y)可得

故滿足條件的點P坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中跑步者距起跑線的距離y單位m與跑步時間t單位s的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇在跑最后100m的過程中,與小林相遇2

D. 小蘇前15s跑過的路程小于小林前15s跑過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校在八年級新生中舉行了全員參加的數(shù)學(xué)應(yīng)用能力大賽,試卷題目共10題,每題10.現(xiàn)分別從三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:

1班:90,70,80,8080,80,8090,80,100;

2班:70,8080,80,60,90,90,90100,90

3班:90,60,70,80,80,8080,90,100100.

整理數(shù)據(jù):

人數(shù)

班級

60分人數(shù)

70分人數(shù)

80分人數(shù)

90分人數(shù)

100分人數(shù)

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

平均數(shù)

中位數(shù)

眾數(shù)

83

80

80

2

83

3

80

80

分析數(shù)據(jù):

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中,,的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由(寫兩條支持你結(jié)論的理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線軸于點,在軸正方向上取點,使;過點軸,交于點,在軸正方向上取點,使;過點軸,交于點,面積為,面積為,面積為,,則等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.

下面是小東的探究過程,請補充完成:

1)化簡函數(shù)解析式,當(dāng)x-1時,y   ,當(dāng)x-1y   ;

2)根據(jù)(1)中的結(jié)果,請在所給坐標(biāo)系中畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):   

4)結(jié)合畫出的函數(shù)圖象,解決問題:若關(guān)于x的方程只有一個實數(shù)根,直接寫出實數(shù)a的取值范圍:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等腰直角三角形,,點是直線上的一個動點(點與點不重合),以為腰作等腰直角,連接.

1)如圖①,當(dāng)點在線段上時,直接寫出的位置關(guān)系,線段,之間的數(shù)量關(guān)系;

2)如圖②,當(dāng)點在線段的延長線上時,試判斷線段,的位置關(guān)系,線段之間的數(shù)量關(guān)系,并說明理由;

3)如圖③,當(dāng)點在線段的延長線上時,試判斷線段的位置關(guān)系,線段之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAEBAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知三角形的三個頂點的坐標(biāo)分別為,,

1)作出三角形關(guān)于軸對稱的三角形

2)點的坐標(biāo)為 .

3)①利用網(wǎng)絡(luò)畫出線段的垂直平分線;②為直線上上一動點,則的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將每件進價為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價、增加銷售量的方法來提高利潤.經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件每降價5元,每天的銷售量可增加50件.設(shè)商品降價x元,每天銷售該商品獲得的利潤為y元.

(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)求當(dāng)x取何值時y最大?并求出y的最大值.

(3)若要是每天銷售利潤為3750元,且盡可能最大的向顧客讓利,應(yīng)將該商品降價多少元?

查看答案和解析>>

同步練習(xí)冊答案