【題目】如圖1,已知直線和直線交于軸上一點(diǎn),且分別交軸于點(diǎn)、點(diǎn),且.
(1)求的值;
(2)如圖1,點(diǎn)是直線上一點(diǎn),且在軸上方,當(dāng)時(shí),在線段上取一點(diǎn),使得,點(diǎn)分別為軸、軸上的動(dòng)點(diǎn),連接,將沿翻折至,求的最小值;
(3)如圖2,分別為射線上的動(dòng)點(diǎn),連接是否存在這樣的點(diǎn),使得為等腰三角形,為直角三角形同時(shí)成立.請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)坐標(biāo).
【答案】(1);(2);(3)或或
【解析】
(1)首先由已知得出點(diǎn)B和C的坐標(biāo),即可得出直線AC的解析式,然后得出點(diǎn)A的坐標(biāo),代入直線AB,即可得出的值;
(2)首先根據(jù)△ACD的面積求出點(diǎn)D坐標(biāo),然后由得出點(diǎn)F的坐標(biāo)和CF,若使有最小值,則M、C′、D在一條直線上,作F和C′關(guān)于軸的對(duì)稱點(diǎn)F′和C′′,根據(jù)D和F′的坐標(biāo)得出DF′,然后即可得解;
(3)若使得為等腰三角形,為直角三角形同時(shí)成立,則分情況求解,H在AC上和AC的延長(zhǎng)線上,根據(jù)平行線成比例和相似三角形的性質(zhì),列出方程,即可得出P坐標(biāo).
(1)由已知,得
∵,C在軸正半軸,B在軸負(fù)半軸
∴
即
∴直線,直線
∴,將其代入直線AB,
∴
(2)∵點(diǎn)是直線上一點(diǎn),設(shè)點(diǎn)D坐標(biāo)為
∴
即
∴,即D
∵
∴,即C′在以CF為半徑的圓上,
若使有最小值,則M、C′、D在一條直線上,作F和C′關(guān)于軸的對(duì)稱點(diǎn)F′和C′′,如圖所示,則,
∴
∴
(3)根據(jù)題意,分情況求解:
①
若PH⊥OA,則HP=HC,HP∥CN
∴
設(shè)H(x,y)可得
,
∴
②
若PH⊥AC,則HP=HC,
∴△APH∽△ACO
∴
設(shè),可得
∴
∴
∴
③
若PH⊥OA,∠H=∠ACO=60°
∴HP=HC=PC
∴
設(shè)H(x,y)可得
∴
故滿足條件的點(diǎn)P坐標(biāo)為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn).
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度.
C. 小蘇在跑最后100m的過(guò)程中,與小林相遇2次.
D. 小蘇前15s跑過(guò)的路程小于小林前15s跑過(guò)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校在八年級(jí)新生中舉行了全員參加的數(shù)學(xué)應(yīng)用能力大賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
人數(shù) 班級(jí) | 60分人數(shù) | 70分人數(shù) | 80分人數(shù) | 90分人數(shù) | 100分人數(shù) |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
平均數(shù) | 中位數(shù) | 眾數(shù) | |
83 | 80 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
分析數(shù)據(jù):
根據(jù)以上信息回答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出表格中,,,的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說(shuō)明理由(寫(xiě)兩條支持你結(jié)論的理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線交軸于點(diǎn),在軸正方向上取點(diǎn),使;過(guò)點(diǎn)作軸,交于點(diǎn),在軸正方向上取點(diǎn),使;過(guò)點(diǎn)作軸,交于點(diǎn),…記面積為,面積為,面積為,…,則等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完成:
(1)化簡(jiǎn)函數(shù)解析式,當(dāng)x≥-1時(shí),y= ,當(dāng)x<-1時(shí)y= ;
(2)根據(jù)(1)中的結(jié)果,請(qǐng)?jiān)谒o坐標(biāo)系中畫(huà)出函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,寫(xiě)出該函數(shù)的一條性質(zhì): .
(4)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:若關(guān)于x的方程只有一個(gè)實(shí)數(shù)根,直接寫(xiě)出實(shí)數(shù)a的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等腰直角三角形,,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),以為腰作等腰直角,連接.
(1)如圖①,當(dāng)點(diǎn)在線段上時(shí),直接寫(xiě)出的位置關(guān)系,線段,之間的數(shù)量關(guān)系;
(2)如圖②,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),試判斷線段,的位置關(guān)系,線段之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖③,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),試判斷線段的位置關(guān)系,線段之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,
(1)作出三角形關(guān)于軸對(duì)稱的三角形
(2)點(diǎn)的坐標(biāo)為 .
(3)①利用網(wǎng)絡(luò)畫(huà)出線段的垂直平分線;②為直線上上一動(dòng)點(diǎn),則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店將每件進(jìn)價(jià)為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過(guò)降低售價(jià)、增加銷售量的方法來(lái)提高利潤(rùn).經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品每件每降價(jià)5元,每天的銷售量可增加50件.設(shè)商品降價(jià)x元,每天銷售該商品獲得的利潤(rùn)為y元.
(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(2)求當(dāng)x取何值時(shí)y最大?并求出y的最大值.
(3)若要是每天銷售利潤(rùn)為3750元,且盡可能最大的向顧客讓利,應(yīng)將該商品降價(jià)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com