【題目】已知:如圖,在△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)O,MN過(guò)點(diǎn)O,且MNBC,分別交AB、AC于點(diǎn)M、N.ODAB,OEAC.

(1)求證:OD=OE.

(2)OMN的中點(diǎn),判斷△ABC的形狀,并說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2)等腰三角形.

【解析】

1)作OHBC,根據(jù)角平分線的性質(zhì)得到OD=OH,OE=OH,OD=OE.

2)根據(jù)O點(diǎn)為MN中點(diǎn)得到OM=ON,根據(jù)HL可證明Rt△MODRt△NOE,得到∠AMN=ANM,再根據(jù)平行得到∠ABC=∠ACB,即可得到△ABC為等腰三角形.

1)作OHBC

∠ABC、∠ACB的平分線相交于點(diǎn)O,OD⊥ABOE⊥AC.

OD=OH,OE=OH,

OD=OE.

2)∵O點(diǎn)為MN中點(diǎn)

OM=ON,

OD⊥AB,OE⊥AC.

△MOD△NOERt△,

OD=OE,

Rt△MODRt△NOEHL

∠AMN=ANM,

MN∥BC

∠ABC=∠ACB,

△ABC為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道對(duì)稱(chēng)補(bǔ)缺的思想是解決與軸對(duì)稱(chēng)圖形有關(guān)的問(wèn)題的一種重要的添加輔助線的策略,參考這種思想解決下列問(wèn)題.

ABC中,DABC外一點(diǎn).

(1)如圖1,若AC平分∠BAD,CEAB于點(diǎn)E,∠ B+ADC=180,求證:BC=CD;

(2)如圖2,若∠ACB=90°, AC=BCFAC上一點(diǎn),ADBFBF延長(zhǎng)線于點(diǎn)D,且BF是∠CBA的角平分線.求證:2AD=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在如圖所示的方格紙中,ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.

1)作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1,其中A,BC分別和A1B1,C1對(duì)應(yīng);

2)平移ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中A,BC分別和A2,B2C2對(duì)應(yīng);

3)填空:在(2)中,設(shè)原ABC的外心為M,A2B2C2的外心為M,則MM2之間的距離為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)正三角形內(nèi)接于一個(gè)半徑為R的O,設(shè)它的公共面積為S,則2S與的大小關(guān)系是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:已知MAB=60°,以AB的長(zhǎng)為菱形ABCD的邊長(zhǎng),點(diǎn)D在AM上,

(1)作出這個(gè)菱形.(保留作圖痕跡,不寫(xiě)作法,不用證明)

(2)若AB=2,則對(duì)角線AC的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車(chē),平均速度為10km/h;乙乘汽車(chē),平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時(shí)間為x(h)(0≤x≤2)

(1)根據(jù)題意,填寫(xiě)下表:

時(shí)間x(h)

A地的距離

0.5

1.8

_____

甲與A地的距離(km)

5

  

20

乙與A地的距離(km)

0

12

  

(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫(xiě)出y1,y2關(guān)于x的函數(shù)解析式;

(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過(guò)點(diǎn)且平行于. 如果三個(gè)頂點(diǎn)的坐標(biāo)分別是,,關(guān)于直線的對(duì)稱(chēng)圖形是.

(1)畫(huà)出

(2)直接寫(xiě)出、、的坐標(biāo).

(3)求出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)DABC的邊AB上,且ADCD

1)用直尺和圓規(guī)作∠BDC的平分線DE,交BC于點(diǎn)E(不寫(xiě)作法,保留作圖痕跡);

2)在(1)的條件下,判斷DEAC的位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案